
A Novel Hexamethylbenzenerhodium Chloride Complex

By B. L. BOOTH, R. N. HASZELDINE,* and M. HILL

(Chemistry Department, The University of Manchester Institute of Science and Technology, Manchester, 1)

THE preparations of several transition-metal complexes of bicyclo[2,2,0]hexa-2,5-diene derivatives have been described recently.^{1,2} As part of a general study of the reactions of such derivatives we have independently obtained the unstable, yellow compound, dichloro(hexamethylbicyclo-[2,2,0]hexa-2,5-diene)palladium (I) by a method similar to that described recently,² and confirm the reported data. The isolation of a novel arene-rhodium complex from hexamethylbicyclo-[2,2,0]hexa-2,5-diene is now described.

When hexamethylbicyclo[2,2,0]hexa-2,5-diene is stirred with RhCl₃,3H₂O in aqueous methanol at 60°, an orange-brown solid is produced (43°_{10}) . The ¹H n.m.r. spectrum in CDCl₃ shows only one band (τ 8.40) indicating the equivalence of the methyl protons; the band is shifted upfield from that observed for hexamethylbenzene (τ 7.85). Its u.v. spectrum in water shows the characteristic absorptions [λ_{max} 204–205, 223–224, and 377– $380 \text{ m}\mu$ (ϵ 9750; 19,500; 4180)] of an aromatic compound, and the i.r. spectrum differs considerably from that of the hexamethylbicyclo-[2,2,0]hexa-2,5-dienepalladium complex referred to above, and resembles more those of hexamethylbenzene and the previously reported³ arene complexes $[(C_6Me_6)_2Rh^{II}]X_2$ (X = PtCl₆ or PF₆) and $[(C_6Me_6)_2Rh^I]$ +PF6-. Elemental analysis for

C, H, and Rh, molecular weight (750, 830 by osmometry in different solvents), and equivalent conductance measurements are fully consistent with a molecular formula $[(Me_6C_6RhCl)_2]^{4+}Cl_4$ (II) [*M*, 743], and an ionic chlorine determination has confirmed the presence of two Cl⁻ ions per Rh atom. The compound (II) reacts with sodium iodide in water replacing the four Cl⁻ ions to

give black crystals which analyse (C, H, Rh) correctly for the corresponding tetraiodide, and have a ¹H n.m.r. spectrum (singlet, τ 8.10 in CH₂Cl₂) and i.r. spectrum very similar to those of compound (II). Sodium tetraphenylborate in water at 20° appears to replace only two Cl- ions in compound (II) as evidenced by elemental analysis (C, H) on the brown solid product (61%)vield) and its ¹H n.m.r. spectrum in CH₂Cl₂ which shows a complex multiplet centred at τ 2.8 (phenyl) and a singlet at τ 8.42 (methyl) in the approximate ratio of 18:20. Compound (II) reacts readily with pyridine in CHCl₃ at room temperature to give an orange-yellow solid (66%yield) having an elemental analysis (C, H, N, Rh, Cl-) consistent with a molecular formula $[Me_6C_6RhClpy]^{2+}Cl_2$ (III), and a ¹H n.m.r. spectrum in CH₂Cl₂ showing multiplet bands at τ 3.35, 2.95 and 1.80 for pyridine and a singlet at τ 8.55 for the methyl protons with an overall intensity ratio ¹H (pyridine):¹H (methyl) of approximately 5:17 in good agreement with the assigned structure (cf. ratio 5:18).

Attempts to prepare compound (II) by heating hexamethylbenzene and $RhCl_{3},3H_2O$ in aqueous methanol under reflux for 2 days gave only recovered starting materials. This suggests that the formation of compound (II) from hexamethylbicyclo[2,2,0]hexa-2,5-diene occurs by the intermediate formation of a hexamethylbicyclo[2,2,0]hexa-2,5-dienerhodium chloride complex, with subsequent rearrangement of the ligand.

Thanks are due to the Science Research Council for a Studentship grant to one of us (M. H.).

(Received, September 11th, 1967; Com. 969.)

¹ B. L. Booth, R. N. Haszeldine, and N. I. Tucker, *J. Organometallic Chem.*, 1967, in the press; E. O. Fischer, C. G. Kreiter, and W. Berngruber, Angew. Chem. Internat. Edn., 1967, 6, 634; E. E. van Tamelen and D. Carty, *J. Amer. Chem. Soc.*, 1967, 89, 3922.

² H. Dietl and P. M. Maitlis, Chem. Comm., 1967, 759.

³ E. O. Fischer and H. H. Lindner, J. Organometallic Chem., 1964, 1, 307.