Derivatives of Tetramethylplatinum

By J. D. RUDDICK and B. L. SHAW*

(School of Chemistry, The University, Leeds, 2)

IN a recent paper it is stated that tetramethylplatinum(IV) is nonexistent (private communications by H. C. Brown and by L. F. Dahl to E. L. Amma).¹ This has prompted us to report that we have made some stable derivatives of tetramethylplatinum(IV) of type [PtMe₄L₂] with $L = AsMe_2Ph$, PMe₂Ph, or PEt₃. platinum(II) and platinum(IV) that two equivalent methyl groups in *trans*-position to the phosphines give a complex resonance pattern of the type recently reported for cis-[PtMe₂(PPh₃)₂]² except that our compounds, being much more soluble, give better spectra than that published.

Pyrolysis of [PtMe₄(PMe₂Ph)₂] at 160° gives

TABLE

Methyl resonance data for some tetramethylplatinum(IV) complexes measured at 60 Mc./sec. and 34°

		${ m Me}^{f a}$			Meb			Methyls on L		
[PtMe4(AsMe2Ph)2]							~ ^			
	Solvent C ₆ H ₆	au9·66	Jp	Јр і 44	au 8·83	Jр	J р t 66	au 8·95	Jр	Jр і 6-5
$[PtMe_4(PMe_2Ph)_2]$	C ₆ H ₆ CHCl ₃	$9.80 \\ 10.23$	$6{\cdot}5 \\ 6{\cdot}4$	43∙5 44	$9.08 \\ 9.61$	*	58 57	8.83 8.60	8·5 8·4	$11.5 \\ 11.5$
$[PtMe_4(PEt_3)_2]$	$C_{6}H_{6}$	9.72	5.8	44	t	t	t	$\operatorname{complex}$		

* Complex resonance pattern, see discussion; † Obscured by overlap with other resonances.

Treatment of cis-[PtCl₂(AsMe₂Ph)₂] with gives methyl-lithium cis-[PtMe₂(AsMe₂Ph)₂]. This reacts with methyl bromide to give [PtBrMe₃(AsMe₂Ph)₂], configuration (I), which reacts with methyl-lithium to give cis-[PtMe4-(AsMe₂Ph₂)₂], configuration (II). The configuration (II) follows from the dipole moment of 5.4 D and also from the n.m.r. (methyl) resonance pattern (Table). We have similarly made the complex cis-[PtMe4(PMe2Ph)2] and also cis- $[PtMe_4(PEt_3)_2]$ by treating $[PtCl_2Me_2(PEt_3)_2]$ with methyl-lithium. In these complexes containing phosphine the two mutually trans-methyl groups (platinum bonded) give a simple n.m.r. pattern but we have generally found for both

ca. quantitative yields of ethane and cis-[PtMe₂(PMe₂Ph)₂].

We have also made many complexes of the types [PtMe_xX_{4-x}L₂] with x = 1-3, X = Cl, Br, I, and L = tertiary phosphine or tertiary arsine.

(Received, September 20th, 1967; Com. 1009.)

¹ R. G. Vranka and E. L. Amma, J. Amer. Chem. Soc., 1967, 89, 3121.

² E. O. Greaves, R. Bruce, and P. M. Maitlis, Chem. Comm., 1967, 860.