Excited Complex formed by Mixed Triplet Interaction

By C. A. PARKER* and THELMA A. JOYCE (Admiralty Materials Laboratory, Holton Heath, Poole, Dorset)

SENSITISED P-type delayed fluorescence¹ can be produced by two mechanisms, both of which require as their first stage the transfer of triplet energy from donor (D) to acceptor (A):

$$^{3}D + ^{1}A \rightarrow ^{1}D + ^{3}A$$
 (1)

The first mechanism then proceeds by interaction between two acceptor triplets:

$${}^{3}A + {}^{3}A \rightarrow [{}^{1}A_{2}^{*}] \rightarrow {}^{1}A^{*} + {}^{1}A$$
 (2)

and the second by interaction between unlike triplets:

$$^{3}A + ^{3}D \rightarrow [(AD)^{*}] \rightarrow ^{1}A^{*} + ^{1}D$$
 (3)

Process (2) can involve the intermediate formation of an excited dimer,² and we now present evidence that process (3) can take place *via* the formation of an excited complex, (AD)*. Such excited complexes ("exciplexes")³ have previously been detected by measuring the prompt fluorescence spectra of relatively concentrated solutions, in which they are sometimes produced by reaction of excited and ground state singlet molecules:—

$$^{1}A^{*} + ^{1}D \rightarrow (AD)^{*}$$
 (4)

Process (3) is favoured in solutions containing low concentrations of acceptor, *i.e.*, solutions in which the donor triplet is only partly quenched. With high concentrations of acceptor, the donor triplet is strongly quenched [equation (1)] and delayed fluorescence is then emitted only viaprocess (2). The transition from the first of these

CHEMICAL COMMUNICATIONS, 1967

conditions to the second is illustrated by the spectra in the Figure. At -75° in ethanol, anthracene alone emits delayed fluorescence showing strong bands due to monomer, and a weak

FIGURE. Illustrating formation of excited complex. Delayed fluorescence of ethanolic solutions of 10^{-4} M anthracene containing the following concentrations of 9,10-diphenylanthracene: Curve 1, zero; curve 2, 3 × 10^{-7} M; curve 3, 10^{-6} M. (High wave number regions distorted by self-absorption.)

broad band due to dimer (curve 1), corresponding to the processes:

³D + ³D
$$\rightarrow$$
 ¹D₂* \longrightarrow ¹D* + ¹D (5)
 \downarrow \downarrow \downarrow
dimer monomer
emission emission

In the presence of 3×10^{-7} M diphenylanthracene (curve 2) the anthracene triplet is partly quenched (as indicated by the decreased intensity of the band at $\sim 2.6 \ \mu \text{m.}^{-1}$), and the delayed fluorescence spectrum now contains components due to anthracene monomer and diphenylanthracene monomer, as well as a broad band emission ($\sim 1.9 \ \mu \text{m.}^{-1}$) which is more intense than that observed from the solution containing anthracene alone. When the concentration of diphenylanthracene is increased to 10^{-6} M, the delayed fluorescence of the anthracene is almost completely quenched, process (3) can no longer occur, and the spectrum corresponds almost entirely to emission from diphenylanthracene monomer produced *via* process (2), with only a small proportion of broad band emission (curve 3).

We accordingly attribute the increased broad band emission (curve 2) to the excited complex (AD)*. From the spectra of the delayed fluorescence of solutions containing various concentrations of diphenylanthracene, we have calculated the ratios of the intensities of emissions from the excited complex (θ_{c}) and from the diphenylanthracene monomer (θ_{M}) (see Table 1). The value of θ_{c}/θ_{M} is greatest at low concentrations of diphenylanthracene and falls to zero at high concentrations, as would be expected if the delayed fluorescence of the monomer is produced *via* processes (2) and (3), but that of the excited complex *via* process (3) alone.

TABLE 1.

Relative efficiency of delayed fluorescence of excited complex

All solutions contained $10^{-4}M$ anthracene and were excited at 366 nm.

Datio of intermition of

Concentration of	emission from complex and from 9,10-diphenyl- anthracene
, 10-uiphenylantimacene	(0C/0M)
10 ⁻⁷ M	0.7
$3 imes10^{-7}$	0.32
10-6	0.24
$3 imes 10^{-6}$	0.13
10-5	0.08
3×10^{-5}	0.02

Correction of the appropriate spectra gave spectra corresponding to the excited complex alone, and the excited dimer of anthracene alone. The wave

Table	2.

			Wave number maximum	
Compound	Concentration	$ heta_{ extbf{D}}/ heta_{ extbf{M}}$	Monomer	Dimer
Pyrene	$2 imes 10^{-5}$ м	0.79	$2.69 \ \mu m^{-1}$	$2.03 \ \mu m^{-1}$
9-Methylanthracene	$2 imes 10^{-5}$	0.23	2.57	1.77
9,10-Dimethylanthracene	$5.5 imes10^{-5}$	0.62	2.48	1.75
9-Phenylanthracene	$2 imes10^{-5}$	0.33	2.53	1.89
9,10-Diphenylanthracene	$2\cdot1$ $ imes$ 10 ⁻⁵	nil	2.46	none
Anthracene	10-4	0.16	2.64	1.83
Anthracene + diphenylanthracene (complex)	see Table 1			1.92

Delayed fluorescence of excited dimers at -75° in ethanol

number maxima of these spectra are compared in Table 2 with the corresponding values derived from measurements of the delayed fluorescence of pyrene and 9,10-substituted anthracenes⁴ at -75° .

(Received, September 14th, 1967; Com. 984.)

- ¹ C. A. Perker, Proc. Roy. Soc., 1963, A, 276, 125.
 ² C. A. Parker and C. G. Hatchard, Trans. Faraday Soc., 1963, 59, 284.
 ³ J. B. Birks, Nature, 1967, 214, 1187.
 ⁴ C. A. Parker and T. A. Joyce, Chem. Comm., 1967, 744.