A Novel Skeletal Rearrangement During Ester Pyrolysis

By **HAROLD KWART*** and D. P. HOSTER

(Department of Chemistry, University of Delaware, Newark, Delaware, 19711)

-4 two-stage mechanism of pyrolytic ester elimination has been advanced¹ as the culmination of extensive rate and product studies by several groups of workers.

 $R\text{-}CO_2R' \rightleftharpoons [RCO_2^-] [+R'] \rightarrow R\text{-}CO_2H + O$ lefin

Depuy and King2 have stressed the factor of the incipient double-bond stability. G. G. Smith and his co-workers,³ by contrast, have emphasized the role of carbonium-ion stability in the transition state. Emovon and Maccoll,⁴ who suggested that the heterolysis of the carbon-oxygen bond is of primary importance, viewed the ester decomposition as being of the same type as thermal dehydrohalogenation of alkyl halides.^{1b} Again, an observed parallelism of polar substituent and structural effects is the essential basis of this hypothesis. Whereas with pyrolytic dehydrohalogenations the occurrence of Wagner-Meerwein rearrangement has been cited⁵ as evidence for a carbonium-ion mechanism, no example of gasphase rearrangement of esters has been reported.

The results of the pyrolysis of 2-methyl-2 phenylpropyl acetate, **(I),** (neophyl acetate) reveal the first instance **of** skeletal rearrangement made to occur under normal^{1b,2} reaction conditions. However, considering the carbonium-ion rearrangement which takes place in the model reaction, $\mathbf{b}, \mathbf{3}$ the pyrolysis products are strikingly different. Only phenyl migration products are observed, for none of the olefins found represent methyl

migration. Two products of β -scission, α -methylstyrene and cumene, are formed at high temperatures as a competing pyrolysis. Furthermore, in the analogous reaction requiring much lower temperatures, neophyl methylxanthate *(ca.* 200") and neophyl halides *(ca.* **450")** give rise *exclusively* to the same phenyl migration products, the competing fragmentation being entirely absent under these conditions.

Product compositions derived from neophyl substrates may afford a basis for choice between a heterolytic and a homolytic mechanism.6 In gathering the data (see Table) conditions were selected *so* as to achieve a small extent of reaction and avoid extensive isomerization of the least stable olefin product. However, at least part of the more stable conjugated product, l-phenyl-2 methylptopene **(11),** is formed by isomerization of the unconjugated isomer, 3-phenyl-2-methylpropene **(111).** Moreover, the ratio **of (III)/(II)** is within small limits relatively constant $(1.5 \rightarrow 3.3)$ and in line with the same product ratio $(2.2 \rightarrow 4.8)$ observed by Ruchardt and Trautwein⁶ and by Kharasch and Urry7 for free-radical elimination of the elements of HCl (by means of $RMgBr + CoCl₂$). On the other hand, the solvolysis of neophyl esters results⁸ in a decided predominance of isomer (II); $[(III)/(II) \text{ ratio} = 0.5 \rightarrow 0.1].$ Furthermore, neat liquid-phase pyrolysis, allowed to occur with free evolution of HC1 at **275",** affords a similar $(III)/(II)$ ratio = 0.1.

The addition of up to one mole *yo* of di-butyl

TABLE

Product composition data^{<i>s} as a function of temperature and additives in the pyrolysis of neophyl acetate phenyl *migration products*

Column temperature	Additive	(III)	(II)	Ratio (III)/(II)	Unreacted $%$ acetate ^c
550°	none	2.6	1.8	1.5	94
550°	D T B P b	2.0	1.1	1.8	97
575°	none	5.7	2.6	2.2	87
575°	DTBP ^b	5.3	$2 \cdot 1$	2.5	89
600°	none	9.2	2.8	$3 - 3$	81
600°	DTBP ^b	8.8	2·7	3.3	83

*^a*Essentially the same reaction conditions, apparatus and techniques were employed here as described elsewhere **for** eliminating the incursion **of** heterogeneous reaction (ref. **lb)** .

b Di-t-butyl peroxide in one mole percent proportion based on neophyl acetate.

^CResidual product components identified as cumene and a-methylstyrene.

peroxide, a free radical source, has only **a** minor effect on either the product proportions or the rate of ester decomposition. Thus, we are not dealing with a free-radical chain-mechanism.

If any significant amount of bond heterolysis had been accompanied by phenyl migration, or, in other words, if we can represent the transition state by analogy to the two-stage mechanism1 **as** *(A),* a predominance of the more stable product **(11)** would be anticipated. The strong preference for formation of the unconjugated isomer (111) barticularly at the higher temperatures where some isomerization to (11) is bound to be taking place; see Table] must be correlated with a seven-membered concerted, cyclic transition state (B) . Although this must be the first case involving a skeletal rearrangement during gas-phase ester pyrolysis, the fact that a seven-membered cycle is required apparently constitutes no real limitation. The hydrogen nucleus in *(B)* is easily accommodated between the carbon and oxygen atoms engaged in its transfer.

Any effort to account for these product composition results by assuming the intermediacy of benzyldimethylcarbinyl acetate, formed *via* a preliminary internal rearrangement, must fail on the basis of the recognized² pattern of pyrolytic elimination in such esters. In all known⁹ cases, a large preference for formation of substituted (conjugated) styrene **by** ester pyrolysis is plainly manifest.

In studies of the pyrolysis of neophyl chloride and related cases found to involve Wagner-Meerwein rearrangement accompanying gas-phase pyrolysis, similar results have been obtained. These all point to the occurrence of a concerted transition state without indications of charge development therein.

(Received, September 18th, **1967;** *Corn.* **991.)**

¹ (a) J. C. Scheer, E. C. Kooyman, and F. L. J. Sixma, *Rec. Trav. chim.*, 1963, 82, 1123; (b) See also, A. Maccoll, Gas-Phase Heterolysis" in Adv. Phys. Org. Chem., 1965, 3, 91.

-
- **C.** H. Depuy and **R.** W. King, *Chem. Rev.,* **1960,60, 431. R.** Taylor, G. G. Smith, and W. H. Wetzel, *J. Amer. Chem. SOC.,* **1962, 84, 4817.**
- E. **U.** Emovon and **A.** Maccoll, *J. Chem. SOC.,* **1964, 227.**
- **-j A.** Maccoll and E. S. Swinbourne, *Proc. Chem. SOC.,* **1960, 409;** *J. Chem. SOL,* **1964, 149.**
-
- C. Ruchardt and H. Trautwein, *Chem. Ber.,* **1963, 96, 160. W.** H. Urry and M. S. Kharasch, *J. Amer. Chem. Soc.,* **1944, 66, 1438.**
- * **W.** H. Saunders, jun., and R. H. Paine, *J. Amer. Chem. Soc.,* **1961, 83, 882.**
- See, **for** examples, C. G. Overberger, E. M. Pearce, and D. J. Tanner, *J. Amer. Chem. SOC.,* **1958, 80, 1761;**
- E. R. Alexander and **A.** Mudrak, *ibid.,* **1950,72, 1810;** W. J. Bailey and **C.** King, J. *Org. Chem.,* **1956,21, 858.**