Chemical Communications

NUMBER 23/1967

6 DECEMBER

The Structure of Dichlorodi-8-quinolinolatotitanium(IV)

By A. G. SWALLOW* and B. F. STUDD (Chemistry Department, Northern Polytechnic, London, N.7)

TITANIUM TETRACHLORIDE reacts with 8-quinolinol in 1:2 mole ratio to form the adduct TiCl₄, 20xH (OxH = 8-quinolinol, Ox = 8-quinolinolato), from which two moles of HCl can be eliminated to produce TiCl₂Ox₂. This compound is a member of a large group of compounds of general formula MX₂(chelate)₂ where M can be Ti, Ge, or Sn; X = F, Cl, Br or I, and 'chelate' can be 8quinolinolato, acetylacetonato, or salicylaldehydato. I.r.¹ and n.m.r.² examinations have been made in an attempt to determine the configuration of these molecules but no crystallographic information is available.

The TiCl₄-8-quinolinol system is capable of yielding several products in addition to TiCl_2Ox_2 , *e.g.*, TiCl_4OxH , TiCl_4OxH , TiCl_2OxH , TiCl_3Ox and TiCl_3Ox have all been isolated.³ It would be of interest to study the mechanism of the reactions leading to such varied products and to the interchange of these products but such a study is seriously hindered by the paucity of structural information. We are therefore examining some of these compounds by *X*-ray crystallographic methods and report here a preliminary description of the complex TiCl}_2\text{Ox}_2.

It has previously been shown³ by X-ray powder patterns that MCl_2Ox_2 complexes of Ti, Ge, and Sn are isomorphous and that the compounds TiX_2Ox_2 are isomorphous for X = Cl and Br. It has been suggested from i.r. studies¹ that $TiBr_2Ox_2$ is *trans* with respect to the bromine. We show, however, that $TiCl_2Ox_2$ is undoubtedly *cis* with respect to chlorine. Crystals of TiCl₂Ox₂, recrystallised by sublimation, are monoclinic with cell dimensions a =14.06 Å, b = 8.54 Å, c = 14.97 Å, and $\beta = 111^{\circ}$. $D_{\rm m} = 1.64$ g.cm.⁻³ (by flotation), for Z = 4, $D_{\rm c} = 1.61$ g.cm.⁻³. Systematic absences indicate space group C2/c or Cc but after working in both space groups we conclude that C2/c(No. 15, $C_{2\lambda}^6$) is probably correct.

The titanium and its immediate co-ordination sphere were located from a three-dimensional Patterson and the rest of the molecule, except hydrogen atoms, was then found in a difference

FIGURE. Molecular structure of $TiCl_2Ox_2$ showing bond lengths and angles.

1198

electron-density map. The structure was refined by block diagonal and full matrix least-squares methods with anisotropic temperature factors.4 The R factor is now 0.116 for 1394 independent non-zero reflections estimated visually from Weissenberg films taken about all three crystallographic axes. The Figure shows the stereochemistry of the molecule which has a crystallographic twofold axis through the titanium atom, bisecting the

Cl-Ti-Cl angle and the N-Ti-N angle. The figure also gives the bond lengths and angles, the estimated standard deviations of the bond lengths are between 0.01 and 0.025 Å while those of the angles are about 1°. The quinolinolate groups are planar within the limits of the experiment and the bond lengths do not differ significantly from those calculated for the 8-quinolinol molecule.5

(Received, October 5th, 1967; Com. 1060.)

I. Douek, M. J. Frazer, Z. Goffer, M. Goldstein, B. Rimmer, and H. A. Willis, Spectrochim. Acta. 1967, 23, A, 373.
J. A. S. Smith and E. J. Wilkins, J. Chem. Soc. (A), 1966, 1749; D. C. Bradley and C. E. Halloway, Chem. Comm., 1965, 284; R. C. Fay and R. N. Lowry, Inorg. Chem., 1967, 6, 1512.
M. J. Frazer and Z. Goffer, J. Chem. Soc. (A), 1966, 544.
J. M. Stewart and D. High, "X-ray 63" used on IBM 7090 at imperial College, London.
B. Kamenar, C. K. Prout, and J. D. Wright, J. Chem. Soc. (A), 1966, 661.