The Structures of Four New Taxinine Congeners, and a Photochemical **Transannular** Reaction

By H. C. CHIANG, M. C. WOODS, Y. NAKADAIRA, and K. NAKANISHI* (Department of Chemistry, Tohoku University, Sendai, Japan)

IN addition to taxinine (I)¹⁻³ and O-cinnamoyltaxicin-I triacetate (II),² we have isolated the following four new diterpenoids from the leaves of Taxus cuspidata Sieb. et Zucc.†

T-A (*taxinine A*) (III) [m.p. 254–255°, $[\alpha]_{\rm D}$ + 106° (CHCl₃), C₂₈H₃₆O₈, *M*⁺ 476, $\lambda_{\rm max}$ (MeOH) 270 m μ (ϵ 4,400), ν_{max} (KBr) 1675 cm.⁻¹⁺] shows the 5-H at δ 4.17 in its n.m.r.§ and no signals due to a cinnamate grouping. Treatment of T-A with cinnamic acid-trifluoroacetic anhydride afforded taxinine $[\delta(5-H) 5.37].4$

T-H (IV) {m.p. 166–167°, $[\alpha]_D$ + 96° (CHCl₃), C₂₈H₃₈O₉, λ_{max} (MeOH) 270 m μ (ϵ 4,100), ν_{max} (KBr) 1673 cm.⁻¹, \ddagger n.m.r.: δ (5-H) 5·23, four acetate signals and no signals due to a cinnamate grouping } was also obtained by acetylation of T-A.

T-K (V) [m.p. 167—168°, $C_{26}H_{36}O_8$, M^+ 476, ν_{max} (KBr) 1700 cm.⁻¹[‡]] and T-L (VI) [m.p. 159—160°, $C_{28}H_{38}O_9$, M^+ 518, ν_{max} (KBr) 1695 $cm.^{-1}$ were isolated from the mother-liquors of T-A. The n.m.r. spectrum of T-L in CDCl₃ showed the presence of four acetate methyls and was assigned as indicated in the Figure. In $C_6 D_6$ solution, a multiplet (ddd) at δ 0.90 with splittings of ca. 14, 12, and 5 c./sec. becomes apparent. This multiplet must originate from a C-7 proton since irradiation near 0.90 p.p.m. does not affect the H-5 triplet. In conjunction with further double-resonance experiments, this establishes the presence of a C--CH₂--CH₂--CH(OAc)--C grouping and leads to the suggestion of structure (VI) for T-L. The spectrum of T-K is almost identical with that of T-L, with the exception that the 5-H

triplet and the 12-H quartet show at δ 4.42 and δ 3.79, respectively, and only three acetate methyl signals are present; thus T-L corresponds to the 5-acetate of T-K. Irradiation of the 15α -Me or 8-Me protons caused large increases (15 to 30%)

FIGURE. Assignment of 100 Mc./sec. n.m.r. of T-L (CDCl_g): H₁ 2·14 (m), H₂ 6·12 (d), H₅ 5·56 (t), H₆--H₇ 1·2--2·3 (m), H₉ 5·71 (d), H₁₀ 5·65 (d), H₁₂ 3·45 (q), H₁₄₀ 2·60 (dd), H₁₄ 2·44 (dd), H₁₆₅ 5·81 (s), H₁₆₀ 5·64 (s), 8-Me 1·31 (s), 12-Me 1·24 (d), 15α-Me 1·68 (s), 15β-Me 1·21 (s); $f_{1,2} = 5$, $f_{56}\alpha = f_{5.6}\beta = 8\cdot5$, $f_{9.10} = 10$, $f_{12-H,12-Me} = 7$, $f_{14\alpha,14\beta} = 20$, $f_{14\alpha,1} = 2\cdot5$, $f_{14\beta,1} = 5$, $c_{.5}ec$. 5 c./sec.

in the areas of the signals of the 2- and 9-protons. These Overhauser effects⁵ are completely in accord with the structures suggested (cf., Figure). As in taxinine,⁴ double resonance experiments revealed appreciable coupling between the 15 α - and 15 β methyl groups (I = ca. 0.25 c./sec.).

The structure of T-K was established by the discovery¶ that irradiation of T-A in dioxan for 15 min. with a 450 w high-pressure Hg-lamp produced T-K in more than 50% yield. The ease with which this photo-induced $3 \rightarrow 11$ transannular bond-formation occurs is not surprising when it is realized that the 3-H is almost directly below the 11,12-double bond in T-A. Mechanistic considerations suggest that the 12-methyl has the β -configuration. The occurrence of this photochemical reaction raises the possibility that T-K and T-L may be artefacts derived from T-A and

Except as noted, spectra are for CDCl₂ solutions at 100 Mc./sec. The photochemistry of taxinine is presently being studied by Dr. M. Kurono of this Department.

[†] About 250 kg. of dried leaves afforded taxinine (220 g), O-cinnamoyltaxicin-I triacetate (200 mg.), T-A (2 g.), T-H (100 mg.), T-K (40 mg.) and T-L (30 mg.); all compounds gave satisfactory analyses.

⁺ Only those bands arising from the C(13) = O are given.

T-H, respectively, by the action of sunlight; however, this is thought to be unlikely because the extracts were stored in soda-glass vessels after isolation from the plant.

This work has been partially supported by the National Institutes of Health.

(Received, October 2nd, 1967; Com. 1049.)

¹ M. Shiro, T. Sato, H. Koyama, Y. Maki, K. Nakanishi, and S. Uyeo, Chem. Comm., 1966, 98, and references therein.

² M. Dukes, D. H. Eyre, J. W. Harrison, and B. Lythgoe, *Tetrahedron Letters*, 1965, 4765; D. H. Eyre, J. W. Harrison, and B. Lythgoe, *J. Chem. Soc.* (C), 1967, 452.

³ For nomenclature and numbering of taxane derivatives see: B. Lythgoe, K. Nakanishi, and S. Uyeo, Proc. Chem. Soc., 1964, 301. The α- and β-configurations for the 15-Me groups are with reference to ring A.
⁴ M. C. Woods, K. Nakanishi, and N. S. Bhacca, *Tetrahedron*, 1966, 22, 243. Although this reference contains an

incorrect stereochemistry for taxinine, the n.m.r. assignments are valid. ⁵ F. A. L. Anet, and A. J. R. Bourn, *J. Amer. Chem. Soc.*, 1965, **87**, 5250 and references quoted therein; M. C. Woods, I. Miura, Y. Nakadaira, A. Terahara, M. Maruyama, and K. Nakanishi, *Tetrahedron Letters*, 1967, 321.