
Competitive Photoisomerizations of 1-Substituted Cycloheptatrienes¹

By A. P. TER BORG,* E. RAZENBERG, and H. KLOOSTERZIEL (Koninklijke/Shell-Laboratorium, Amsterdam, Badhuisweg, 3)

Two photoisomerizations of cycloheptatriene are known: a valence tautomerization bicyclo[3,2,0]hepta-2,6-diene² and a 1-7 shift of hydrogen.³⁻⁵ In the neat liquid the ratio of the two processes (as derived⁵ from the results with 7-deuterocycloheptatriene) is 0.002. Preliminary results obtained by Chapman and Borden⁶ suggested that a substituent (alkoxy-group) might change this ratio considerably, as has recently been confirmed.⁷ We report here the behaviour of 1-substituted cycloheptatrienes (I) upon irradiation, which was carried out as described in reference 5.

As depicted in the scheme below, either photochemical reaction may yield two products:

As reported previously,⁵ a 1-phenyl substituent shows no specific effect, isomerization by a shift of hydrogen being the only process observed and 2-(IIa) and 7-phenyl-cycloheptatriene (IIb) being formed in approximately equal amounts.

With the electron-attracting cyano-group in the 1-position, a shift of hydrogen is similarly the only process observed, but the direction of the shift is highly specific: only 2-cyanocycloheptatriene (IIa) With electron-donating groups (Me, is formed. MeS, MeO) in the 1-position the shift occurs in the opposite direction, and 7-X-cycloheptatriene (IIb)

is the major product with little or no 2-isomer formed.

With increasing electron-donating capacity of the substituent, valence tautomerization to (III) (occurring to a very minor extent in the unsubstituted compound) gains in importance. In the case of the dimethylamino-compound the products resulting from a shift of hydrogen, 2- and 7-Me₂N- C_7H_7 , could not be detected (< 1%).

The direction of the valence tautomerization, as already noted by Chapman et al.,7 for the methoxy-5-Methoxy- and compound, is very specific. 5-methylthio-bicyclo[3,2,0]hepta-2,6-diene (IIIa) were the only valence tautomers observed, but a few per cent of the corresponding 3-isomers (IIIb) may have escaped detection. 1-Dimethylaminocycloheptatriene yielded in addition to the major product (IIIa) ca. 3% of 3-dimethylaminobicyclo-[3,2,0]hepta-2,6-diene (IIIb), which was isolated and identified by comparison with an independently synthesized sample.

TABLE

(Initial) Products of irradiation (in %) of 1-substituted cycloheptatriene

			Products			
Substituent			(IIa)	(IIb)	(IIIa)	(IIIb)
CN			100			
\mathbf{Ph}			50	50		
Me	••		2	98		
SMe				65	35	
OMe				35	65	—
NMe_2	••	••		—	97	3

These results, summarized in the Table, show that substituents can change the ratio of competing photochemical pathways by several orders of magnitude. Thus, for instance, the presence of a dimethylamino-group in the 1-position of cycloheptatriene increases the ratio of valence tautomerization to the 1-7 shift of hydrogen by a factor of at least 50,000.

(Received, October 4th, 1967; Com. 1055.)

¹ Part of the series on "The Chemistry of Cycloheptatriene", previous Paper, A. P. ter Borg, H. Kloosterziel, and Y. L. Westphal, Rec. Trav. chim., 1967, 86, 474. ² W. G. Dauben and R. L. Cargill, Tetrahedron, 1961, 12, 186.

- ³ W. R. Roth, Angew. Chem., 1963, 75, 921.
 ⁴ W. von E. Doering and P. P. Gaspar, J. Amer. Chem. Soc., 1963, 85, 3043.
 ⁵ A. P. ter Borg and H. Kloosterziel, Rec. Trav. chim., 1965, 84, 241.
- ⁶ O. L. Chapman and G. W. Borden, Proc. Chem. Soc., 1963, 221.
- ⁷ G. W. Borden, O. L. Chapman, R. Swindell, and T. Tezuka, J. Amer. Chem. Soc., 1967, 89, 2979.