The Biosynthesis of Brefeldin A

By R. G. COOMBE,* P. S. Foss, and T. R. Watson (Pharmacy Department, University of Sydney, Sydney, Australia)

The occurrence of the fungal metabolite brefeldin A (I), C₁₆H₂₄O₄, has been reported from four different species of fungi and also from *Curvularia lunata*. This compound which has significant cytotoxic and antifungal activity has a cyclopentane ring structure whose biogenetic origin is not obvious from an examination of the structural formula.

Labelling experiments discussed below indicate that brefeldin A is wholly acetate derived and is structurally similar to the macrolide curvularin (II), $C_{16}H_{20}O_5$, also isolated from a *Curvularia sp.* and acetate derived.¹

The literature has revealed only a small number of nonterpenoid cyclopentane structures, the prostaglandins, calythrone, and terrein being examples, and for this reason the biosynthetic origin of the cyclopentane ring in brefeldin A was investigated.

The five-membered ring in brefeldin A could arise by a direct oxidative condensation of a polyketide structure or by a ring contraction of a six-membered ring intermediate of the palitantin (III) type.

Palitantin and frequentin are co-metabolites with brefeldin A in *Penicillium berfeldianum*. [1-14C]-acetate-labelling experiments with brefeldin A isolated from *Curvularia lunata* are summarised in

TABLE

[1-14C]Acetate-labelled brefedlin A

			Average RMA (10 ⁻⁸)	% Label		Theoretical %
Brefeldin A			435·5, 427·5	100.0,	100.0	100.0
Hexane-1,5-diol di-p-nitrobenzoate			150·4, 159·0	34.6,	$37 \cdot 2$	37.5
Ethyleneglycol di-p-nitrobenzoate			48·4 , 53·75	11.3,	12.5	12.5
3,4-Dihydroxymethylcyclopentan-1-ol	l tri- <i>p</i> -					
nitrobenzoate			159·5, 166·5	36.7,	39.0	37.5
Acetic acid(Kuhn-Roth)			53·2 54·3,	12.2,	12.5	12.5

the Table. The degradative products were obtained by a modified reductive ozonolysis as described by Sigg.² These results indicate that brefeldin A is formed from eight acetate units and that the cyclopentane ring has not been produced from a palitantin precursor by a ring contraction since if this were the case the 3,4-dihydroxymethyl-cyclopentan-1-ol ester obtained by degradation would be expected to contain four labels and have

50% of the initial activity. The results are consistant with a direct oxidative condensation, although it is not possible to exclude a ring contraction of a non-palitantin precursor. This last possibility is unlikely when the co-production of acylorcinol metabolites, palitantin, frequentin and brefedlin A by *P. brefeldianum* are considered.

(Received, October 16th, 1967; Com. 1108.)

A. J. Birch, O. C. Musgrave, R. W. Rickards, and H. Smith, J. Chem. Soc., 1959, 3146.
H. P. von Sigg, Helv. Chim. Acta, 1964, 47, 1401.