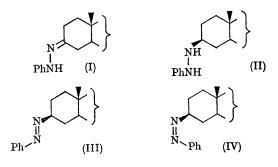
Demonstration of Geometrical Isomerism in Arylazoalkanes


By J. BUCKINGHAM and R. D. GUTHRIE* (The Chemical Laboratory, University of Sussex, Brighton, BN1 9QJ)

THE cis-form of azobenzene was prepared by Hartley in 1938¹ by irradiation of a solution of the trans-form. An equilibrium mixture was obtained from which he isolated about 20% of the ciscompound, which was stable in the solid state in the dark. More recently, Hutton and Steele² have prepared the cis-form of azomethane by gas-phase photolysis of the trans-form.

We now describe the isolation of the cis-form in the remaining class of azo-compounds, namely mixed azo-compounds or arylazoalkanes.

Reduction of cholestan-3-one phenylhydrazone (I) with lithium aluminium hydride gave 1-phenyl-2-(3\beta-cholestanyl)hydrazine (II), m.p. 170-172°, $[\alpha]_{D}^{23}$ -18.3° (CHCl₃) which was readily oxidised by air or mercuric oxide to 3β -phenylazocholestane, m.p. 139-140° $[\alpha]_{D}^{23} + 22^{\circ}$ (CHCl₃) λ_{max} (CHCl₃) 269, and 404 m μ (ϵ 10,300 and 180) to which we ascribe the trans-configuration (III). The 3β stereochemistry was shown by Raney nickelcatalysed hydrogenation to 3β -aminocholestane, characterised as the known³ N-acetyl derivative. Irradiation of the trans-compound in ether for 48 hr., in a mixture of daylight and artificial light, gave two compounds which were separated by preparative thin-layer chromatography into starting material ($R_F 0.85$) and a new yellow substance ($R_{\rm F}$ 0·3) (22%), m.p. 111–113° $[\alpha]_{\rm D}^{23}$ -4·4° (CHCl₃) λ_{max} (CHCl₃) 244.5 and 394 m μ (ϵ 5650 and 310) to which we assign the $cis-3\beta$ -phenylazocholestane structure, (IV), since lithium aluminium

hydride reduction gave 1-phenyl-2-(3β -cholestanyl)hydrazine (II), identical to the previous sample and which could be further oxidised back to the 3β trans-azo-compound (III). The ultraviolet spectrum of the cis-compound showed, by analogy with cis- and trans-azobenzene,4 the expected changes in the $\pi \to \pi^*$ and $n \to \pi^*$ bands. The optical rotatory dispersion spectrum of the cis-form is greatly different from the trans, the sign of the Cotton effect being opposite and the amplitude being about seven times larger; this amplitude difference is in keeping with the difference in ease of rotation about the C(3)-N bond of the chromophore in the two isomers; if the geometries of the cis- and trans-forms resemble those of the azobenzene analogues, then it is possible that the greater chirality of the cis-form (IV) also contributes to the difference in amplitude.

(Received, October 18th, 1967; Com. 1124.)

- ¹G. S. Hartley, J. Chem. Soc., 1938, 633.
- ² R. F. Hutton and C. Steel, J. Amer. Chem. Soc., 1964, 86, 745.
 ³ C. W. Shoppee, D. E. Evans, H. C. Richards, and G. H. R. Summers, J. Chem. Soc., 1956, 1649.
- ⁴ P. P. Birnbaum, J. H. Linford, and D. W. G. Style, Trans. Faraday Soc., 1953, 49, 735.