A New Heteroaromatic Ring System derived from 3,4-Dihydro-4-oxo-1,2,3-benzotriazine

By A. W. Murray* and K. Vaughan
(Chemistry Department, University of Dundee, Dundee, Scotland)

A RECENT paper¹ on the synthesis of benzotriazolo-[2,1-a]naphtho[1,8-de]triazine prompts us to report our observations on the reaction of 3,4-dihydro-2-(o-nitrophenyl)-4-oxo-1,2,3-benzotriazine (I)² under reflux with triethyl phosphite. The product of the reaction, a yellow crystalline solid, $C_{13}H_8N_4O$, m.p. 261— 262° (55% yield), displayed absorption at 1715 cm. $^{-1}$ (C=O) in the infrared but showed

no bands characteristic of nitro-group absorption while it exhibited three main regions of absorption in the ultraviolet region, $^3\lambda_{\rm max}$ 228 (ϵ 17,600), 240 (ϵ 18,900), 267 (ϵ 10,900), 295 (ϵ 3,290), 304 (ϵ 3,080), 358 (ϵ 17,200), 369 (ϵ 17,600), and 404 m μ (ϵ 17,000). On alkaline hydrolysis it afforded 2-(o-carboxyphenylamino)benzotriazole (IV) which was identified by elemental analysis, infrared,

ultraviolet, and mass spectra. On these grounds C₁₃H₈N₄O is assigned the 13-oxobenzotriazolo[2,1b]benzo[1,2-e]triazine structure (III). This structure is supported by the mass spectrum which shows the molecular ion peak at m/e 236 and a fragmentation pattern compatible with structure (III).

Treatment of (III) with bromine in glacial acetic acid and nitration at 5° with 75% nitric acid gives dibromo- and dinitro-derivatives, respectively.

The formation of (III) may be explained in terms of a nitrene intermediate (II) since the generation of nitrene-like intermediates in the phosphite deoxygenation of nitro-compounds is well known.⁴ Thus interaction of the π -electrons of the triazine ring with the developing nitrene would yield 13-oxobenzotriazolo [2,1-b] benzo [1,2-e]triazine (III).

The only other product obtained, in very small yield, from the reaction, was o-nitrophenylphosphoric acid diethyl ester (V). The only reasonable interpretation for the formation of this ester is to postulate a competing Michaelis-Arbusov reaction^{5,6} in which nucleophilic attack by phosphorus at the 1'-position of the nitro-substituted aryl group displaces the triazine residue.

(Received, October 9th, 1967; Com. 1066.)

- ¹ H. Sieper and P. Tavs, Annalen, 1967, 704, 161.
- ² P. Grammaticakis, Compt. Rend., 1956, 243, 2094.
- ³ G. M. Badger, R. S. Pearce, and R. Pettit, J. Chem. Soc., 1951, 3199.
- ⁴ J. I. G. Cadogan and M. Cameron-Woode, Proc. Chem. Soc., 1962, 361; J. I. G. Cadogan, M. Cameron-Woode, R. K. Mackie, and R. J. G. Searle, J. Chem. Soc., 1965, 4831.

 ⁵ B. A. Arbusov, Pure and Appl. Chem., 1964, 9, 307.

 - ⁶ H. Sieper, Tetrahedron Letters, 1967, 1987.