Electron Attachment to DCl in the y-Radiolysis of Cyclohexane + DCl Solutions

By J. T. RICHARDS and G. Scholes*

(Laboratory of Radiation Chemistry, School of Chemistry, The University, Newcastle upon Tyne)

 γ -RADIOLYSIS of solutions of DCl in cyclohexane results in the formation of HD and D₂: G-values for the yields of HD, D₂, and H₂ (Table) were obtained from yield against dose plots, which were linear over the dose range studied (1–3 \times 10¹⁸ ev. ml.-1). The results indicate that DCl can, at low concentrations, react with a precursor of hydrogen in irradiated liquid cyclohexane, which, since $k(H + DCl)/k(H + C_6H_{12}) \ge 10$, cannot be a thermal H atom. These observations are compatible with our original proposal¹ that electron attachment to suitable scavengers (e.g., N₂O) can occur in these irradiated non-polar systems. On this basis, the formation of HD and of D₂ in cyclohexane + DCl solutions will result mainly from the reactions:

$$e^- + \text{DCl} \xrightarrow{\text{(DCl)}} D + \text{Cl}_{\text{DCl}}$$
 (1)

$$D + C_6 H_{12} \rightarrow HD + C_6 H_{11}.$$
 (2)

$$D + DCl \rightarrow D_2 + Cl$$
 (3)

Reaction (3) should be of significance only at higher DCl concentrations, and the observed D. yields (see Table) are consistent with this premise. A contribution to the HD yield can also arise from the reaction of any radiolytically produced H atom with DCl, viz.,

$$H + DCl \rightarrow HD + Cl \qquad (4)$$
$$\rightarrow HCl + D$$

- ¹G. Scholes and M. Simic, Nature, 1964, 202, 895.
- ² D. A. Armstrong, Canad. J. Chem., 1962, 40, 1385.
 ³ R. A. Lee, Nature, 1967, 216, 57.

but here also, the contribution will only be significant at higher scavenger concentrations.

TABLE

γ -ration vsis of cyclonexane + DCI solution	y-Radiolysis	of	cyclohexane	+	DCl	solution
---	--------------	----	-------------	---	-----	----------

		G-values		
[DCl]	H_2	HD	D_2	$HD + D_2$
0	5.40	—		
$3 \cdot 2$	5.15	0.76	0.006	0.77
9.8	4.67	1.33	0.013	1.34
82.6	3.81	2.07	0.084	$2 \cdot 15$
100	3.12	2.65	0.17	2.82
208	2.64	3.01	0.40	3.41
356	2.35	$3 \cdot 26$	0.62	3.88

The values of $G(HD) + G(D_2)$ at the various DCl concentrations will therefore represent an upper limit for the extent of reaction (1). These values are lower, by about 25%, than those of $G(N_2)$ from irradiated cyclohexane + N₂O solutions of equivalent N₂O concentration, even though $k(e^- + N_2O)/k_1 \sim 1$; hence, in this latter system it is possible that some nitrogen is formed from a

process other than $N_2O \xrightarrow{e^-} N_2 + O^-$.

Since the formation of D atoms from DCl by dissociative capture of a thermal electron is endothermic to the extent of 0.7 ev, the electron attachment process, reaction (1), may involve more than one DCl molecule; such association has already been suggested for electron capture by HCl both in the solid² and gaseous³ phase.

(Received, October 25th, 1967; Com. 1146.)