The Absolute Stereochemistry at C-2 of Thiazolidines derived from *R*-Penicillamine and Aldehydes

By I. McMillan and R. J. Stoodley*

(Department of Organic Chemistry, University of Newcastle upon Tyne)

In connection with the synthesis of some penicillin analogues we became interested in the factors which control the stereochemistry at C-2 of thiazolidines formed from R-penicillamine and aldehydes. Here we describe a convenient method for determining the absolute stereochemistry at C-2.

Foster and his co-workers¹ have successfully determined the absolute configuration at the acetal centre of 1,3-dioxolans by n.m.r. spectroscopy. The acetal proton was shown to be deshielded by cis-alkyl substituents at C-3 or C-4.2 Consequently, it seemed likely that the chemical shift of the C-4 proton of 4-carboxythiazolidines would reflect the stereochemistry at C-2. Support for this expectation was found in the chemical shifts of the C-4 protons of 4R-carboxy-5,5dimethylthiazolidine $(I)^3$ and 4R-carboxy-2,2,5,5tetramethylthiazolidine (II)⁴ which occurred at τ 6.18 and 5.78, respectively. The model compounds indicated that a methyl group at C-2 cis to the hydrogen at C-4 deshielded the latter by 0.40 p.p.m.

 $2S_{s}AR$ -Dicarboxy-5,5-dimethylthiazolidine (III), m.p. 188–190° (decomp), $[\alpha]_{\rm D} - 13°$ (pyridine), was synthesized from *R*-penicillamine and glyoxylic acid.⁵ The stereochemistry of (III) was confirmed

by conversion to its N-ethoxycarbonyl derivative, m.p. 148—150°, $[\alpha]_D$ – 79° (chloroform), which gave a syrupy anhydride (v_{max} 1820, 1770, and 1715 cm.⁻¹; M^+ 259.0536) with dicyclohexyl-Diazomethane esterification of carbodi-imide. (III) gave (IV), m.p. $63-64^\circ$, $[\alpha]_{\rm D} + 4^\circ$ (chloroform), which was equilibrated with 2R, 4Rdimethoxycarbonyl-5,5-dimethylthiazolidine (V), m.p. 96°, $[\alpha]_{\rm p}$ + 162° (chloroform) in methanolic hydrogen 4R-Methoxycarbonyl-2Schloride. carboxy-5,5-dimethylthiazolidine (VI), m.p. 82-84°, $[\alpha]_{\rm p}$ + 73° (chloroform) and 4*R*-methoxycarbonyl-2R-carboxy-5,5-dimethylthiazolidine (VII), m.p. 112—114°, $[\alpha]_{\rm D}$ + 197° (chloroform), were obtained by monosaponification of (IV) and (V), respectively. 2S-Methoxycarbonyl-4R-carboxy-5,5-dimethylthiazolidine (VIII), m.p. 108-110°, $[\alpha]_D + 58^\circ$ (chloroform) was obtained from *R*-penicillamine and methyl glyoxylate. Its stereochemistry was confirmed by conversion to (IV) with diazomethane.

The chemical shifts of the C-4 protons of these thiazolidines are shown in the Table. In all cases the C-4 proton resonated at lower field when cis to an alkyl substituent at C-2, compared to compounds in which the C-4 proton was cis to a hydrogen at C-2.

$\begin{array}{c} R^2 \\ R^1 \\ HN \\ HN \\ CO_2 R^3 \end{array}$				$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
Compound	\mathbb{R}^1	\mathbf{R}^{2}	\mathbb{R}^3	au	Compound	\mathbf{R}^{1}	\mathbb{R}^2	\mathbb{R}^3	τ
$(I)^{3}$	н	н	H	6.18	(X) ⁸	PhCH₂·CONH	н	н	5.80
(II) ⁴	Me	Me	н	5.78	(XI) ⁹	PhCH ₂ ·CONH	\mathbf{H}	Me	5.86
(III)	Н	CO_2H	н	5.89	(XII) ¹⁰	H	C1	${ m Me}$	5.91
(IV)	н	CO ₂ Me	Me	6.05	(XIII) ¹¹	$Ph(CO)_2N$	\mathbf{H}	н	5.73
(V)	CO ₂ Me	Ĥ	Me	5.62	(XIV) ¹¹	$Ph(CO)_2N$	H	Me	5.78
(V1)	Ĥ	$CO_{2}H$	Me	6.02	. ,	· · · •			
(VII)	$CO_{2}H$	H	${\rm Me}$	5.52					
(VIII)	Ĥ	CO ₂ Me	н	6.01					
(IX) ^b	CO_2H	Ĥ	Н	5.26					

TABLE Chemical shifts^a of C-4 protons in thiazolidine derivatives

^a N.m.r. spectra were measured in pyridine at 60 Mc./sec. with tetramethylsilane as an internal standard; ^b This compound has not been fully characterized; its presence in the mother liquor after crystallization of (III) was implied by n.m.r. spectroscopy.

4R-Carboxy-2,5,5-trimethylthiazolidine, m.p. 149-150°, $[\alpha]_{D}$ + 133° (pyridine), was prepared from R-penicillamine and acetaldehyde and was shown to be a mixture of stereoisomers by n.m.r. spectroscopy. The tertiary protons, which appeared at τ 6.07 and 5.88 in the ratio of 4:1, suggested that the predominant stereoisomer was 4*R*-carboxy-2*S*-5,5-trimethylthiazolidine. Similarly 4R-carboxy-5,5-dimethyl-2-phenylthiazolidine6

was found to be a mixture of stereoisomers. The tertiary protons, which resonated at $\tau 5.93$ and 5.87, were present in the ratio of 3:1 implying that the major isomer was 4R-carboxy-5,5-dimethyl-2S-phenylthiazolidine.

A number of penicilloic acid derivatives and related compounds were also examined and the results are shown in the Table. In these cases, in which the substituent at C-2 of the thiazolidine is known to possess the *R*-configuration, the chemical shift of the C-4 protons fell between τ 5.73 and

5.91. Consequently, it was expected that if a penicilloate possessed the 2S-stereochemistry then the C-4 proton would resonate at higher field. The γ -isomer of methyl 4*R*-carboxy-5,5-dimethyl- α -phthalimido-2-thiazolidine acetate, m.p. 180-182°, $[\alpha]_D - 8^\circ$ (dioxan), was prepared by Sheehan's method.7 The C-4 proton resonated at τ 6.12 suggesting that this isomer possessed the 2S-configuration.

The results described indicate that, in the case of the 4-carboxythiazolidine derivatives, the chemical shift of the C-4 proton is a valuable guide to the relative stereochemistry at C-2. In particular if both stereoisomers at C-2 are available the isomer in which the C-4 proton appears at lowest field possessed the trans-configuration.

The authors thank Beecham Research Laboratories for financial assistance.

(Received, October 27th, 1967; Com. 1172.)

¹ N. Baggett, K. W. Buck, A. B. Foster, and J. M. Webber, *J. Chem. Soc.*, 1965, 3401; N. Baggett, K. W. Buck, A. B. Foster, M. H. Randall, and J. M. Webber, *ibid.*, 1965, 3394; N. Baggett, J. M. Duxbury, A. B. Foster, and J. M. Webber, J. Chem. Soc. (C), 1966, 208.

² M. Anteunis and F. Alderweireldt (Bull. Soc. chim. belg., 1964, 73, 889) have reached the opposite conclusion but their interpretation is based upon a misassignment of stereochemistry. We thank Dr. J. G. Buchanan for pointing out this paper to us.

³ H. T. Clarke, J. R. Johnson, and R. Robinson, "The Chemistry of Penicillin", Princeton University Press, Princeton, 1949, p. 958.

⁴ Ref. 3, p. 26.

⁵ A similar condensation utilizing the methyl ester of penicillamine has been described (R. Bentley, A. H. Cook, J. A. Elvidge, and G. Shaw, J. Chem. Soc., 1949, 2351; see also ref. 3, p. 964). No stereochemical assignments were made.

⁶ Ref. 3, p. 946.

⁷ J. C. Sheehan and D. A. Johnson, J. Amer. Chem. Soc., 1954, 76, 158.

⁸ Řef. 3, p. 582.

⁹ Ref. 3, p. 613.

¹⁰ I. Mcmillan and R. J. Stoodley, Tetrahedron Letters, 1966, 1205. The absolute stereochemistry at C-2 and the β-position has now been established by a chemical method. ¹¹ J. C. Sheehan and P. A. Cruickshank, J. Amer. Chem. Soc., 1956, 78, 3677.