The Absorption Spectrum of Gaseous Silver Fluoride

By R. M. CLEMENTS and R. F. BARROW* (Physical Chemistry Laboratory, Oxford University)

ALTHOUGH the properties of the excited electronic states of the silver halides are of considerable theoretical interest,¹ in the case of AgF only a brief account, giving the vibrational analysis of one system, $B \leftarrow X$, has so far been published.² We now give a preliminary account of a high resolution study of the absorption spectrum of gaseous AgF in the region 3100 to 3550 Å.

The spectrum was photographed on a 3.4 m

Jarrell Ash spectrograph at temperatures of about 1200 to 1300°c provided by a carbon tube furnace. The strongest feature is a continuum centred at about 3030 Å. At longer wavelengths, bands of two systems are observed, (i) B-X, with red degraded bands, as reported by Joshi and Sharma,² (ii) A-X, predominantly violet degraded, although in the 1-0 band, $B' \simeq B''$. At $\lambda < 2600$ Å, red degraded bands of a third system C \leftarrow X appear.

Constants for states of 107 AgF				
State	T_{00}	$\Delta G_{\frac{1}{2}}$	χ _{ewe}	
B0+	31594.13	37 6·0	0.27	
A 0+	29250.88	455.45		
$X^{1}\Sigma^{+}$	0	508-27	2.59	
	B_{0}	10 ⁸ a	10 7 D	r ₀ , Å
в	0.2555		4.7	2.022
Α	0.2727	6·1	3.66	1.958
X	0.2648	1.9	2.88	1.986

TABLE

 μ ⁽¹⁰⁷AgF) = 16·137 a.m.u. The values of $\Delta G_{\frac{1}{2}}$ and of $\pi_{e}\omega_{e}$ for B 0⁺ are from reference 2.

The assignment of the first two systems to AgF is confirmed by study of the isotope effect between ¹⁰⁷AgF and ¹⁰⁹AgF.

The rotational analysis of the 1-0, 0-0, 0-1, 1-1 and 1-2 bands of A-X and the 0-1 and 0-2 bands of B-X has been completed. Both systems are of the type $0^+ - {}^1\Sigma^+$. All the upper levels show predissociations and in A, only v = 0 and 1 are observed: in B, v = 0 is the only level to show sharp rotational structure. The spectrum seems not to have been observed in emission and it is possible that all levels in A and B are predissociated, for v = 0 in A lies at 29251 cm.⁻¹ above v = 0 in X¹ Σ^+ , close to the dissociation limit given by thermochemical studies,³ $D_{298}^0 = 29660 \pm 1400$ cm.-1. An attempt may be made to estimate a limiting curve of predissociation in A from the J values in v = 0 and 1 at which the lines become observably broad: this gives $D_0^0 < 29830 \text{ cm.}^{-1}$, but the slope of this line indicates that this limit is that of a potential maximum at $r \sim 2.4$ Å.

(Received, November 20th, 1967; Com. 1254.)

¹ R. S. Mulliken, Phys. Rev., 1937, 51, 310.

² M. M. Joshi and D. Sharma, *Indian J. Pure Appl. Phys.*, 1963, 1, 86. ⁸ K. F. Zmbov and J. L. Margrave, *J. Phys. Chem.*, 1967, 71, 446.