Catalysis of Hydridobis[bis(diphenylphosphino)ethane]cobalt in the Reaction of Butadiene with Ethylene

By MASAO IWAMOTO* and SADAO YUGUCHI (Toyo Rayon Co. Ltd., Sonoyama, Otsu, Japan)

A CATALYST consisting of dichlorobis [bis(diphenylphosphino)ethane]cobalt, $[CoCl_2(DP)_2]$, and triethylaluminium is very effective for selective synthesis of hexa-1,4-diene from butadiene and ethylene.¹ Hexa-1,4-diene is formed as a result of shifting a hydrogen atom from ethylene to butadiene. In one of the possible mechanisms for the hydrogen shift, we assumed that a cobalt hydride complex is formed as a reaction intermediate, because cobalt hydride is easily formed and often acts as a hydrogen carrier.

Here we report the catalytic behaviour of hydridobis[bis(diphenylphosphino)ethane]cobalt in the above reaction. $CoCl_2(DP)_2$ with diethylaluminium ethoxide or with lithium aluminium hydride² yields the hydrido-cobalt complex, yet is inactive in the formation of hexa-1,4-diene,³ probably because the cobalt is co-ordinately saturated. However, we find that certain substances can activate the hydrido-cobalt complex.

The results of adding a variety of organoaluminium compounds as the activator are shown in the Table. In systems containing $CoCl_2(DP)_2$, triethylaluminium was one of the most suitable co-catalysts, but in systems containing the hydrido-cobalt complex diethylaluminium chloride was more effective than triethylaluminium. Diethylaluminium ethoxide is able to reduce $CoCl_2$ - $(DP)_2$ to yield the hydrido-cobalt complex, but does not activate it. Triethylaluminium used with $CoCl_2(DP)_2$ is considered to act as reducing reagent and as a moderate activator. Diethylaluminium chloride being a slightly poorer reducing agent was less effective in combination with $CoCl_2$ - $(DP)_2$, but showed a high ability for the activation

CHEMICAL COMMUNICATIONS, 1968

TABLE

Catalysis of hydridobis[bis(diphenylphosphino)ethane]cobalt in the reaction of butadiene with ethylene^a

Activator			Toluene	Temp.	Time	Butadiene Ethylene		Products (g.)			
No.	(g.)			(ml.)	(°)	(hr.)	(g.)	(kg./cm. ²)	1,4- HDb	Otherse	Residue
1				30	80	7.5	20.1	50	0 ·01	0.07	0.1
2 E	Ct ₃ Al (0.83)			20	85	3.0	73.7	3 5	51.2	3.3	3.6
3 E	Ct ₂ AlCl (0.48)			20	95	0.2	40.2	50	59·3	1.5	1.3
4 E	t ₃ Al ₂ Cl ₃ (0.25)	••		20	95	1.0	40.2	50	57.8	3.4	2.6
5 A	.lČl, (1·0)			20	105	$2 \cdot 0$	33.5	40	14.7	0.08	$22 \cdot 6$
6 P	'hOH` (4·7)			50	90	17.0	33.5	45	27.8		3.1
7 p	-Cl·C ₆ H ₄ ·ÓH (6·4))		50	90	17.0	33.5	45	48.6	0.2	$5 \cdot 2$
8 2	4-Cl ₂ ·C ₆ H ₃ ·OH (7	7.65)		50	85	18.0	33.5	45	44 ·8		7.8
92	,4,5-Čl₃·Č ₆ H ₂ ·OH	(9.87)	••	50	85	18.0	36.8	45	47.2	0.6	10.7

^a The hydrido-cobalt complex, 0.42 g.; ^b HD = hexadiene; ^c Contained the 2,4-isomer and higher oligomers.

of the hydrido-cobalt complex. The effects of organoaluminium compounds appear to be connected with their acidities.⁴ Some typical Lewis acids were also activators, but many polymeric substances were simultaneously formed by cationic polymerization of butadiene.

Interestingly phenols are effective co-catalysts with the hydrido-cobalt complex. p-Chloro-, 2,4-dichloro-, and 2,4,5-trichloro-phenol are more effective than phenol, but 2,4,6-trichlorophenol is Since the hydrido-cobalt complex inactive. dissolved in the phenols used above, this may partly account for the activation but it is not a sufficient condition because 2,4,6-trichlorophenol also dissolved the complex.

We suggest that acidic compounds such as diethylaluminium chloride and aluminium chloride attack the basic moiety, probably a phosphorous atom co-ordinated with the cobalt atom, thus producing co-ordinative unsaturation and a position for attachment of the olefin. The action of the phenolic compounds is rather complicated. Their effectiveness depends on their acidity and the substituent effects.

(Received, September 4th, 1967; Com. 950.)

¹ A. Miyake, G. Hata, M. Iwamoto, and S. Yuguchi, The 7th World Petroleum Congress, P.D. No. 22 (3), Mexico, 1967.

² A. Sacco and R. Ugo, J. Chem. Soc., 1964, 3274.
³ M. Iwamoto and S. Yuguchi, Bull. Chem. Soc. Japan, to be published.

⁴ (a) H. Imai, T. Saegusa, and J. Furukawa, Makromol. Chem., 1965, 81, 92; (b) H. Lehmkuhl, Angew. Chem., Internat. Edn., 1964, 3, 107.