## Structural Studies on Bromoglycosyl Fluorides

By J. C. CAMPBELL, R. A. DWEK, P. W. KENT, and C. K. PROUT\* (Departments of Biochemistry, Physical Chemistry, and \*Crystallography, University of Oxford)

IN a survey of bromofluorination reactions involving acetylated glycals, it has been reported<sup>1</sup> that 3,4,6-tri-O-acetyl-D-glucal with N-bromosuccinimide and anhydrous hydrogen fluoride in ether at  $-70^{\circ}$  give two crystalline isomeric bromofluorides, 3,4,6-tri-O-acetyl-2-bromo-2-deoxy- $\beta$ -Dmannopyranosyl fluoride (I) (major product) and 3,4,6-tri-O-acetyl-2-bromo-2-deoxy-a-D-glucopyranosyl fluoride (II). The X-ray crystal structure analysis of the manno-isomer (I) gives the crystal data:  $C_{12}H_{16}O_7BrF$ ,  $M = 371\cdot 2$ , orthorhombic disphenoidal, optically biaxial; a = $6.97 \pm 0.02$ ,  $b = 15.47 \pm 0.03$ ,  $c = 14.72 \pm 0.03$ 0.03 Å; U = 1586 Å<sup>3</sup>;  $D_{\rm m} = 1.544$  g.cm.<sup>-3</sup> by flotation; Z = 4;  $D_c = 1.555$  g.cm.<sup>-3</sup>; F(000) = 752; Space group,  $P2_12_12_1$ ; Cu- $K_{\alpha}$  radiation,  $\mu = 42.81$  cm.<sup>-1</sup>; 910 independent reflections were measured visually from equi-inclination Weissenberg photographs.

The position of the bromine atom was determined from a three-dimensional Patterson function "sharpened to point atoms at rest" and the light atoms were located from a three-dimensional



minimum function. The trial structure, with individual isotropic temperature factors, was refined by full-matrix least-squares. Hydrogen atoms were placed by difference syntheses. The reliability factor, R, stands at 10.1%, the bond length e.s.d.'s being  $\geq 0.04$  Å.

The projection of the molecule perpendicular

## CHEMICAL COMMUNICATIONS, 1968

to the plane of the 4-acetoxy-side-chain clearly shows that the bromine atom on C-2 and the fluorine atom on C-1 are trans-diaxial. Thus (I) is in fact the  $\alpha$ -D-mannopyranosyl fluoride, and thus it accords with results of other glycal additions.2

The <sup>19</sup>F and proton magnetic resonance spectra of (I) were interpreted on the basis of the above structure and the values  $J_{\rm H-1,\,F}$  (gem) = 51.0  $\pm$ 1.0 c./sec. and  $J_{\text{H-2, F}}$  (gauche) = 2.7  $\pm$  0.3 c/sec. were assigned. Similar values for  $J_{H-1,F}$  (gem) have been observed in the other glycosyl fluorides examined by ourselves and Hall and Manville.3 The coupling constants for  $J_{H-2,F}$  (gauche) were of the same order as above, whereas the values for  $J_{H-2, F}$  (trans) were of the order of 27 c./sec. Their use as a simple diagnostic test for establishing the stereochemistry of the C(1)-C(2) positions already suggested by Hall and Maville,3 is validated by comparisons with an independently determined Thus <sup>19</sup>F resonance structure in our systems. measurements confirmed the structures proposed for 2-bromo-2-deoxy-a-D-galactopyranosyl fluoride,<sup>4</sup> 2-bromo-2-deoxy- $\beta$ -D-arabinopyranosyl fluoride<sup>5</sup> and compound (II). However, the sugar previously described<sup>6</sup> as the  $\beta$ -anomer was found to be 2,4,5-tri-O-acetyl-2-deoxy-2-iodo-a-D-mannopyranosyl fluoride.



FIGURE. The projection of the molecule perpendicular to the plane of the 4-acetoxy-side-chain.

(Received, October 23rd, 1967; Com. 1135.)

- <sup>1</sup> P. W. Kent, F. O. Robson, and V. A. Welch, Proc. Chem. Soc., 1963, 24; J. Chem. Soc., 1963, 3273.
- R. U. Lemieux and B. Frazer-Reid, Canad. J. Chem., 1964, 42, 532; 1965, 43, 1460.
   L. D. Hall and J. F. Manville, Chem. and Ind., 1967, 468; 1965, 991; Carbohydrate Res., 1967, 4, 512.

- <sup>4</sup> P. W. Kent and M. R. Freeman, J. Chem. Soc., 1966, 910.
  <sup>5</sup> P. W. Kent and J. E. G. Barnett, J. Chem. Soc., 1964, 6196.
  <sup>6</sup> K. R. Wood, P. W. Kent, and D. Fisher, J. Chem. Soc. (C), 1966, 912.