Nuclear Magnetic Resonance Study of 2-Halogeno-2-deoxyhexopyranosyl Fluorides

By L. D. HALL* and J. F. MANVILLE

(Department of Chemistry, The University of British Columbia, Vancouver 8, B.C., Canada)

IN a previous communication, we described the synthesis of a series of 2-halogeno-2-deoxyhexopyranosyl fluoride derivatives, together with the chemical evidence for their structures. The ¹H n.m.r. parameters of these derivatives confirmed these assigned configurations and, more importantly, indicated that the derivatives all have the same conformational symmetry.

The ¹⁹F n.m.r. parameters, which are listed in Table 1, demonstrate several important stereospecific dependencies. As expected,¹⁻³ the *vicinal* ¹⁹F-¹H coupling constants show the same angular dependence as that of vicinal ¹H-¹H couplings⁴ insofar that, for each particular substituent at C(2), $J_{gauche} < J_{trans.}$ More importantly, the vicinal ¹⁹F-¹H couplings appear to have an approximately linear relationship with the Huggins electronegativity of the substituents attached to C(1) and C(2). This is in accord with a previous suggestion^{2b} and the linear plots, which represent these relationships, are summarised in Table 2.

The ¹⁹F shifts for each of the three series of compounds increase regularly through the series

TABLE 1

¹⁹F Chemical shifts^a and vicinal ¹⁹F-¹H coupling constants^b for 2-halogeno-2-deoxyhexopyranosyl fluoride triacetates, and related derivatives

					AcO AcO	H_2 H_1 H_1 H_2 H_1 H_1 H_2 H_1 H_2 H_1 H_2	$\begin{cases} \overbrace{X}^{H_2} \\ F \\ F \\ F \\ \end{array}$		$\begin{cases} 0\\ H_2\\ X\\ H_1 \end{cases} F$		
					(α-D·	-manno-)	(a-D-gluco-)		(β-D-gluco-)		
	Com	pound			φc	$J(\mathrm{F},\mathrm{H_{2e}})$	φc	$J({ m F},{ m H_{28}})$	φs	$J(\mathrm{F},\mathrm{H_{28}})$	
$X = H^d$			••		131-1	5.3c	131.1	38.0	$125 \cdot 2$	15.3/10.7	
X = I		••	••	••	116.9	4.3c	139.8	27.8	$132 \cdot 3$	9.3	
X = Br	••	••			$123 \cdot 1$	3.0c	144.9	$25 \cdot 2$	136.0	10.0	
X = Cl			• •		127.8	1·9°	147.6	24.0	138.9	10.6	
X = OAc	e	••	••	••	$138 \cdot 8$	1.2c	149.9	23.8	137.8	12.0	

^a Unless otherwise stated spectra were measured in $CDCl_3$ solutions containing *ca.* 20% CFCl₃ (ϕ_c values in p.p.m.). A modified Varian HA-100 spectrometer was used; ^b First-order parameters (Hz.); ^c In (CD_3)₂CO solution containing *ca.* 20% CFCl₃; ^d See reference 1b; ^e See reference 1a.

TABLE 2

Linear relationships between vicinal ¹⁹F-JH coupling constants and substituent electronegativity $J(H_2,F) = C + m\Sigma\epsilon$

Configura	ation c	of					
derivatives			Coupling	С	m	Σε	Error (Hz.)
α-D-gluco			$I(\mathbf{F_{a}}, \mathbf{H_{a}})$	149.4	10.9	b	2.2
α-D-gluco ^a	• •			78.5	-4.7	ъ	0.6,
α-D-manno	••		$J(\mathbf{F}_{\mathbf{a}},\mathbf{H}_{\mathbf{2e}})$	38.7	-3.2	b	0.2_{8}
α-D-manno			,	23.5	-3.2	с	0.2_{8}
β-D-gluco ^d	••		$J(\mathbf{F_{e}},\mathbf{H_{28}})$	-1.6	+1.1	ь	0.7_{5}^{-}
β-D-gluco ^a	••	• •		-25.7	$+3\cdot 2$	ь	0.14

^a Excluding value for X = H; ^b Huggins electronegativity of all the substituents attached to C(1) and C(2) (excluding F and H₂); ^e Huggins electronegativity of those substituents attached to C(1) and C(2) and oriented antiparallel to F or H₂ (excluding F and H₂); ^d The value 10.7 Hz. was used for $J(F_{e}, H_{2B})$.

X = I, Br, Cl, which is in accord with the empirical "Q-parameter" dependence of Schaefer and his co-workers.⁵ However, comparison of the above shifts with those of the 2-deoxy-derivatives (X = H) shows that when a halogen substituent is placed in a gauche relationship with respect to the fluorine substituent (α - and β -D-gluco-series) the ¹⁹F resonance (ϕ_c -value) is shifted to high field, whereas a halogen substituent in an anti-planar orientation (α -D-manno-series) results in a shift to low field. Thus a previously unrecognised factor, which must be angular dependent, plays an important role in determining ¹⁹F chemical shifts.

It is interesting to note that there is a systematic difference between the induced shifts of the α and β -D-gluco-series, the ratio being 1.24 ± 0.03 :1, which possibly reflects some distortion of the pyranose ring from the "cyclohexane-chair" symmetry; this possibility is being further investigated.

Financial assistance for this work was received from the National Research Council of Canada and the National Cancer Institute of Canada, we also thank Dr. R. J. Abraham for helpful discussion.

(Received, October 30th, 1967; Com. 1165.)

¹ (a) L. D. Hall and J. F. Manville, Chem. and Ind., 1965, 991; (b) Canad. J. Chem., 1967, 45, 1299.

⁽a) R. J. Abraham and L. Cavalli, Mol. Phys., 1965, 9, 67; (b) R. J. Abraham, L. Cavalli, and K. G. R. Pachler, Mol. Phys., 1966, 11, 471.

⁸ K. L. Williamson, Y. F. Li, F. H. Hall, and S. Swager, J. Amer. Chem. Soc., 1966, 88, 5678.

⁴ M. Karplus, J. Amer. Chem. Soc., 1963, 85, 2871. ⁵ F. Hruska, H. M. Hutton, and T. Schaefer, Canad. J. Chem., 1965, 43, 2392.