Silver Ion–Bullvalene Complex Formation resulting in an Infinite Helical Structure with Ag⁺–H₂O Co-ordination

By JAMES S. MCKECHNIE and IAIN C. PAUL*

(W. A. Noyes Chemical Laboratory, University of Illinois, Urbana, Illinois 61801)

WHILE attempting to prepare a sample of the 2:1 bullvalene-silver tetrafluoroborate complex^{1,2} suitable for single crystal X-ray studies, we succeeded in isolating a few crystals of a 1:1 bullvalene-AgBF₄ monohydrate ($C_{10}H_{10}$, AgBF₄,-H₂O). The structure of this complex has been elucidated as part of a series of structural studies on bullvalene and its derivatives.²

The transparent needles, from propan-2-ol, belong to the monoclinic system with $a = 8.49 \pm 0.02$, $b = 14.84 \pm 0.03$, $c = 18.74 \pm 0.04$ Å, and $\beta = 107^{\circ}40' \pm 20'$ (Mo- K_{α} , $\lambda = 0.7107$ Å). The space group is $P2_1/c$. The density ($D_m = 1.95$ g.cm.⁻³) indicates that the unit cell contains eight $C_{10}H_{10}$, AgBF₄, H₂O species ($D_c = 2.02$), two of which must be crystallographically independent. A total of 2164 independent structure amplitudes was obtained from visual estimates of equiinclination Weissenberg photographs (Cu- K_{α} radiation). The structure was determined by the heavy-atom method and refined by full-matrix least-squares methods, incorporating anisotropic temperature factors, to give an *R*-factor of 0.12 on all

observed reflexions. The structure viewed along the a and b-axes is illustrated in Figures 1 and 2.

Each Ag^+ ion complexes to two bullvalene molecules, and each bullvalene molecule is complexed by two Ag^+ ions. The resulting structure is an irregular spiral or helix around the 2_1 screw axis. Another co-ordination position of each silver ion, directed outward from the axis of the helix, is occupied by a water molecule which, in turn, engages in hydrogen bonding with the tetrafluoroborate anions. The shortest $Ag^+ \cdots F$ contact is $2 \cdot 94$ Å. The two $Ag^+ \cdots O$ distances are $2 \cdot 32$ and $2 \cdot 42$ Å, in close agreement with the $Ag^+ \cdots O$ distances found in various silver nitrate-olefin complexes.³⁻⁵

Each Ag⁺ ion forms one short and one long Ag⁺-olefin contact with both complexing bullvalene molecules. The four short Ag⁺ \cdots C=C midpoint distances are 2.36, 2.37, 2.42, and 2.46 Å, while the four long contacts are 2.96, 2.97, 3.10, and 3.19 Å. Similar ranges of Ag⁺-olefin distances were found in the 3:1 bullvalene-AgBF₄ complex^{2,6} When the individual Ag⁺ \cdots C

CHEMICAL COMMUNICATIONS, 1968

distances are considered, further evidence is obtained for the unsymmetrical Ag+-olefin complexing pattern discussed elsewhere.² All the double bonds in the crystal either form one short Ag+ contact or two long Ag+ contacts (such as occur in the cyclooctatetraene-AgNO₃ complex⁴).

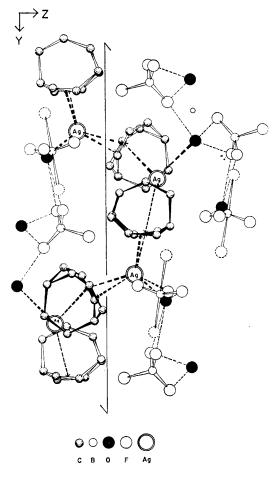


FIGURE 1. The structure viewed along the a-axis. $Ag^+ \cdots C = C$ (mid-point) and $Ag^+ \cdots O$ contacts are shown by dark, discontinuous lines, while the hydrogen bonds between water and the BF_4^- anions are shown by single, discontinuous lines. The two positions for the apical fluorine atom in the disordered BF_4^- anion are shown by discontinuous circles.

 $\mathbf{45}$

The C--C distances (avg. e.s.d. \pm 0.04 Å) do not indicate that valence tautomerism is taking place in the crystal, and support the conclusion that strong Ag^+ complex formation (*i.e.*, as inferred from short distances) to two double bonds in bullvalene is sufficient to "freeze" any rearrangement.2

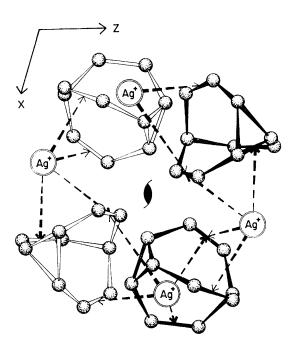


FIGURE 2. A view of the silver-bullvalene arrangement looking down the b (helical)-axis. The water molecules and BF_4^- anions are not shown.

One of the tetrafluoroborate anions appears to crystallize in a two-fold disordered fashion, with three of the fluorine atoms occupying the same positions in all unit cells but the boron and fourth fluorine atoms occupying two different positions on a statistical basis. The other BF_4 anion appears to be fully ordered.

This work was supported in part by grants from the U.S. Public Health Department.

(Received, November 6th, 1967; Com. 1199.)

- ¹ A. Allerhand and H. S. Gutowsky, J. Amer. Chem. Soc., 1965, 87, 4092.
- ² J. S. McKechnie, M. G. Newton, and I. C. Paul, J. Amer. Chem. Soc., 1967, 89, 4819.

- ³ N. C. Baenziger, H. L. Haight, R. Alexander, and J. R. Doyle, *Inorg. Chem.*, 1966, 5, 1399.
 ⁴ F. S. Mathews and W. N. Lipscomb, *J. Phys. Chem.*, 1959, 63, 845.
 ⁵ J. A. Hartsuck and I. C. Paul, *Chem. and Ind.*, 1964, 977; A. T. McPhail and G. A. Sim, *J. Chem. Soc.* (B), 1966, 112; R. B. Jackson and W. E. Streib, *J. Amer. Chem. Soc.*, 1967, 89, 2539.
 ⁶ M. C. Newton and J. C. Daul, *L. Amer. Chem. Soc.*, 1967, 89, 2539.
 - ⁶ M. G. Newton and I. C. Paul, J. Amer. Chem. Soc., 1966, 88, 3161.