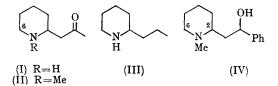
Biosynthesis of the Piperidine Alkaloids: Origin of the Piperidine Nucleus of N-Methylisopelletierine


By R. N. GUPTA and IAN D. SPENSER*

(Department of Chemistry, McMaster University, Hamilton, Ontario, Canada)

ISOPELLETIERINE (I) and its N-methyl derivative (II) have been isolated from a number of plant genera, including Sedum.¹ Their carbon skeleton is identical with that of the hemlock alkaloids [e.g., coniine (III)]. The hemlock alkaloids are of polyketide origin.⁹ The biosynthetic derivation of isopelletierine has not been established. However, a Sedum alkaloid of related structure, sedamine (IV), has been shown to originate from amino-acids and not from a polyacyl precursor.^{3,4} Its piperidine nucleus is derived from lysine. Activity from [2-¹⁴C]lysine was confined to C-2, activity from [6-¹⁴C]lysine to C-6 of the nucleus of sedamine.⁴

We now present evidence which demonstrates that the piperidine ring of N-methylisopelletierine (II), unlike that of coniine (III), is derived from lysine.

Radioactive N-methylisopelletierine was isolated, after addition of carrier, from excised shoots of *Sedum sarmentosum*,⁵ which had been kept in contact with $[6^{-14}C]$ lysine for 48 hr. Degradation of the labelled product yielded C-6 of the piperidine nucleus as formaldehyde, isolated as the dimedone derivative, whose specific activity was identical, within experimental error, with that of the intact alkaloid. All activity from $[6^{-14}C]$ lysine was thus confined to C-6 of the nucleus of *N*-methylisopelletierine (II).

In a further experiment, doubly labelled $[6^{-14}C, 4, 5^{-3}H_2]$ lysine was administered to *S. sarmentosum* shoots. The *N*-methylisopelletierine which was isolated showed a ${}^{14}C/{}^{3}H$ ratio identical with that of the administered doubly labelled lysine. Similarly, in *S. acre*, doubly labelled $[6^{-14}C, 4, 5^{-3}H_2]$ lysine was incorporated into sedamine (IV) without change of the ${}^{14}C/{}^{3}H$ ratio.

These results show that the piperidine nucleus of N-methylisopelletierine, like that of sedamine^{3,4}

and of anabasine,^{6,7} but unlike that of the hemlock bases,² originates from lysine, by way of a nonsymmetrical intermediate. Since the ¹⁴C/³H ratio was maintained in the products obtained when ¹⁴C,³H-labelled lysine served as the precursor of N-methylisopelletierine and of sedamine, the nonsymmetrical intermediate is more likely to be α -keto- ϵ -aminohexanoic acid than α -aminoadipic δ -semialdehyde (cf. ref. 7). If free α -aminoadipic δ -semialdehyde were an intermediate, incorporation of [5-3H]lysine into the piperidine nucleus would be expected to be accompanied by loss of tritium.

(Received, November 7th, 1967; Com. 1250.)

- ¹ H.-G. Boit, "Ergebnisse der Alkaloid-Chemie bis 1960", Akademie-Verlag, Berlin, 1961, p. 132.

- ² H.-G. Bolt, Elgebhasse der Ankalou-chemie bis 1960, Anademie Verlag, Dermi
 ² E. Leete, J. Amer. Chem. Soc., 1963, 85, 3523; 1964, 86, 2509.
 ³ R. N. Gupta and I. D. Spenser, Chem. Comm., 1966, 893.
 ⁴ R. N. Gupta and I. D. Spenser, Canad. J. Chem., 1967, 45, 1275.
 ⁵ L. Marion and M. Chaput, Canad. J. Res., 1949, 27, B, 215.
 ⁶ E. Leete, J. Amer. Chem. Soc., 1956, 78, 3520.
 ⁷ E. Leete, E. G. Gros, and T. J. Gilbertson, J. Amer. Chem. Soc., 1964, 86, 3907.