Coupling and "Virtual" Coupling in the Nuclear Magnetic Resonance Spectra of Phosphine Complexes

Ву А. Риссоск

(The Chemical Laboratory, University of Sussex, Brighton)

Two of the limiting forms of $X_n AA' X_n'$ n.m.r. spectra¹ are found for the ¹H-spectra of phenyldimethylphosphine complexes of transition metals.² When the phosphines are trans, the methyl resonance exhibits "virtual" coupling and is a triplet, because $|{}^{2}J(PMP')|$ is much larger than $|{}^{2}J(PCH) - {}^{4}J(PMPCH)|$.¹ When the phosphines are cis, the spectrum is a doublet because $|^{2}J(PMP')|$ and $|^{4}J(PMPCH)|$ are small. This behaviour is of great use in stereochemical determinations² and it shows that $|^{2}J(PMP')|$ depends strongly on the angle subtended at the metal atom by the two phosphorus atoms.

Careful examination of the ¹H spectra of some phosphite complexes has enabled lower limits to be placed on the magnitude of $|^{2}I(PMP')|$ in a number of situations,³ but the data in the Table phosphite than in phosphine complexes, and the origin of the effect appears to be a larger value in the phosphite complexes of $|\psi_{(\mathbf{P3s})}(0)|^2$, on which all these coupling constants depend directly.6

The ¹H spectrum of trans-[PdI₂(PhPMe₂)- $(PhO)_{3}P$ in the methyl region is a 1:1:1:1quartet (τ 7.87) from which the two phosphorushydrogen coupling constants may be obtained. They can be assigned as $|{}^{2}J(PCH)| = 10.2 \text{ c./sec.}$ and $|{}^{4}J(\text{PMPCH})| = 4.5 \text{ c./sec., since without}$ exception $|{}^{2}J(PCH)| > 6$ c./sec. in a variety of phosphine co-ordination compounds.7 In transbis(dimethylphenylphosphine)palladium complexes $|^{2}/(PCH)|$ will be very similar to the above value, and using the factor of 1.5 to allow for the difference between couplings involving phosphites and phosphines, we estimate 4/(PMPCH)

TABLE

	$J^{2}J(PMP') (c./sec.)$	δ (p.p.m. from P ₄ O ₆)	
trans-[PdI ₂ (PhPMe ₂)(PhO) ₃ P]	829	127.2, 14.6	
trans-[PdI ₂ (Bu ₃ P)(PhO) ₃ P]	758	102.7, 9.7	
trans-[PdI ₂ (PhPMe ₂)(Bu ₃ P)]	551	133·1, 111·4	

are believed to be the first actual measurements for phosphorus ligands placed trans.[†] The parameters were obtained by analysis of the AB-type ³¹P-spectra at 24.29 Mc./sec. with a capillary tube containing phosphorus(III) oxide as the reference.

The marked dependence of $|{}^{2}J(PMP'_{trans})|$ on the electronegativity of the groups bound to phosphorus occurs also for $|{}^{2}J(PMP'_{cis})|$, this being 21.9 c./sec. in mer-[RhCl₃(Bu₃P)₃] and 30.3 c./sec. in mer-[RhCl₃(Bu₃P)₂(PhO)₃P].⁴ The direct couplings $|{}^{1}J(PM)|$ (M = ${}^{11}B$, ${}^{103}Rh$, and ¹⁹⁵Pt)^{4,5} are similarly larger by a factor of ca. 1.5 in

 ~ 3 c./sec. However, the separation of the outer lines of the triplet in the spectra of the bis-phosphine complexes is given by $|^{2}J(PCH) +$ ⁴/(PMPCH)¹ and values of ca. 7-9 c./sec. have been obtained,⁸ so it is evident that $^{2}/(PCH)$ and ⁴J(PMPCH) have opposite signs in these compounds. It further follows that the absolute sign of ${}^{4}J(\text{PMPCH})$ is positive, since ${}^{2}J(\text{PCH})$ has been shown to be positive in the free phosphine⁹ and to change sign on co-ordination.⁷⁰

(Received, November 27th, 1967; Com. 1273.)

† In trans-[Mo(CO)₄(Bu₃P)(Ph₃P)]direct observations have recently shown that $|^{2}J(PMP'_{trans})| = 50 \pm 10$ c./sec. (S. O. Grim, D. A. Wheatland, and W. McFarlane, *J. Amer. Chem. Soc.*, 1967, 89, 5573), and this indicates a strong dependence of the *trans*-coupling constant on the electronic structure of the complex.

² P. R. Brookes and B. L. Shaw, J. Chem. Soc. (A), 1967, 1079 and references therein.

⁸ D. G. Hendricker, R. E. McCarley, R. W. King, and J. G. Verkade, Inorg. Chem., 1966, 5, 639.

⁴ F. H. Allen and A. Pidcock, unpublished observations.

⁵ A. Pidcock, R. E. Richards, and L. M. Venanzi, J. Chem. Soc. (A), 1966, 1707; J. G. Verkade, R. W. King, and C. W. Heitsch, Inorg. Chem., 1964, 3, 884.

⁶ J. A. Pople and D. P. Santry, *Mol. Phys.*, 1964, 8, 1. ⁷ (a) C. W. Heitsch, *Inorg. Chem.*, 1965, 4, 1019; (b) J. B. de Roos and J. P. Oliver, *ibid.*, p. 1741; (c) A. R. Cullingworth, A. Pidcock, and J. D. Smith, Chem. Comm., 1966, 89.

J. M. Jenkins and B. L. Shaw, J. Chem. Soc. (A), 1966, 770.
W. McFarlane, Chem. Comm., 1967, 58.

¹ R. K. Harris, Canad. J. Chem., 1964, 42, 2275.