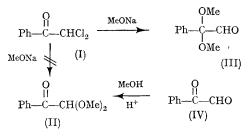
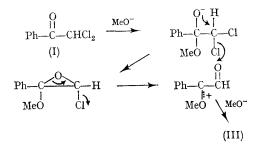
A Rearrangement in the Reaction of αα-Dichloroacetophenone with Sodium Methoxide


By KENNETH R. HENERY-LOGAN* and TOMAS L. FRIDINGER (Department of Chemistry, University of Maryland, College Park, Maryland 20742)

ALTHOUGH the reaction of α -halogeno- and $\alpha\alpha\alpha$ trihalogeno-ketones with nucleophilic reagents has been studied extensively, almost no information is available on the corresponding reactions of $\alpha\alpha$ dihalogeno-ketones. The high reactivity of phenacyl halides with weakly basic nucleophiles has been ascribed to the activating influence of the carbonyl group,¹ but with strongly basic nucleophiles the *carbonyl carbon* is attacked and epoxides have been isolated.² With $\alpha\alpha\alpha$ -trihalogeno-ketones, the haloform reaction is observed.

It has been reported that the reaction of $\alpha\alpha$ -dichloroacetophenone (I) with sodium methoxide afforded phenylglyoxal dimethyl acetal (II).³ However, the product of the reaction is clearly shown by chemical and spectral evidence to be the isomeric aldehyde: phenylglyoxal dimethyl ketal (III). Authentic acetal (II) was prepared from phenylglyoxal (IV) and methyl alcohol.

Treatment of (I)⁴ with sodium methoxide in methyl alcohol afforded in 80% yield a product, b.p. 123—130°/25 mm.,† resembling the compound previously described (lit.,³ b.p. 110—114°/13 mm.). Structure (III) is assigned on the basis of the following data: n.m.r. spectrum (internal standard Me₄Si) δ (CCl₄) 3·22 (6 H, CH₃), 7·28 (5 H, broad multiplet, phenyl protons) and 9.24 p.p.m. (1 H, s, aldehyde proton); ν_{max} (film) 1745 cm.⁻¹. Chemical evidence for (III) was provided by a positive Fehling test. In addition, by using a procedure for the conversion of aldehydes into nitriles,⁵ compound (III) was converted into phenylglyoxal dimethyl ketal NNN-trimethylhydrazonium iodide, which underwent an elimination reaction with sodium isopropoxide in propan-2-ol to give phenylglyoxylonitrile dimethyl ketal, characterized by molecular weight (mass spectrum), n.m.r., i.r. and u.v. spectroscopy.


Heating a solution of (IV) (freshly distilled from its hydrate) under reflux in methyl alcoholbenzene with a catalytic amount of sulphuric acid

† Satisfactory elemental analyses have been obtained on all new compounds.

CHEMICAL COMMUNICATIONS, 1968

afforded the acetal (II), b.p. $85-86^{\circ}/0.25$ mm. Structure (II) is assigned on the basis of the following data: δ (CCl₄) 3.46 (6 H, s, CH₃), 4.88 (1 H, s) and 7.38 and 8.02 p.p.m. (5 H, broad multiplets, phenyl protons); v_{max} (film) 1700 cm.⁻¹.

Compound (II) gave a negative Fehling test. The i.r. spectra show the conjugated carbonyl group in (II) and the absence of conjugation in (III). The n.m.r. spectrum of (III) has the characteristic low-field aldehyde proton.

The mechanism for the formation of ketal (III) proposes the intermediate formation of an epoxide and resembles that of the reaction of α -halogenoketones with sodium methoxide.^{2,6} Attack by the methoxide on the epoxide occurs at the more hindered carbon indicating that the reaction has considerable $S_{\rm N}$ character or proceeds by a carbonium-oxonium ion.6

This investigation was supported by a National Aeronautics and Space Administration Fellowship (to T.L.F.).

(Received, December 11th, 1967; Com. 1325.)

¹ (a) R. G. Pearson, S. H. Langer, F. V. Williams, and W. J. McGuire, J. Amer. Chem. Soc., 1952, 74, 5130; (b) P. D.

Bartlett and E. N. Trachtenberg, *ibid.*, 1958, **80**, 5808. ² (a) T. I. Temnikova and E. N. Kropacheva, *J. Gen. Chem.* (U.S.S.R.), 1949, **19**, 1917; (b) C. L. Stevens, W. Malik, and R. Pratt, *J. Amer. Chem. Soc.*, 1950, **72**, 4758; (c) C. L. Stevens and P. M. Pillai, *ibid.*, 1967, **89**, 3084. ³ J. Houben and W. Fischer, *Ber.*, 1931, **64**, 2636. ⁴ L. C. Actor J. D. Newlick, D. M. Leiberg, *et al.*, 2007. Cont. Cont.

- J. G. Aston, J. D. Newkirk, D. M. Jenkins, and J. Dorsky, Org. Synth., Coll. Vol. III, 1955, p. 538.
 ⁵ R. F. Smith and L. E. Walker, J. Org. Chem., 1962, 27, 4372.
 ⁶ A. Hassner and P. Catsoulacos, J. Org. Chem., 1966, 31, 3149.