Spectra attributed to the PCN and HPCN Free Radicals

By N. BASCO* and K. K. YEE

(Department of Chemistry, University of British Columbia, Vancouver 8, Canada)

WE have reported¹ that the NCN and HNCN free radicals are produced in the flash photolysis of ammonia-cyanogen mixtures. The mechanism suggested was

$$\begin{array}{l} \operatorname{CN}(X^{2}\Sigma) \,+\, \operatorname{NH}(X^{3}\Sigma) \,\rightarrow \\ \\ \operatorname{H}(^{2}S) \,+\, \operatorname{NCN}(^{3}\Sigma_{g}^{-},^{1}\Delta_{g}) \, \xrightarrow{\mathrm{M}} \, \operatorname{HNCN}(X^{2}A^{\prime\prime}) \end{array}$$

the NH radical being produced mainly by successive reaction of CN with NH₃ and NH₂. Since similar reactions would be expected to occur between CN and PH, we have studied the flash photolysis of PH₃-C₂N₂-N₂ mixtures and report two new absorption spectra which can be attributed to the PCN and HPCN free radicals.

Cyanogen was prepared by the reaction of potassium cyanide with copper sulphate,² and phosphine (Matheson) was purified by distillation *in vacuo*. A mixture of $PH_3-C_2N_2-N_2$ (0.2:50:200 mm. Hg pressure) was flash photolysed at an energy of ~1000 J. The electronic absorption spectra were recorded on Ilford HP3 plate using a Hilger quartz spectrograph, model E742, with an absorption path of 50 cm. The PCN spectrum rises to a maximum intensity of ~3 μ sec. and is visible for ~150 μ sec. Similar behaviour was observed for the HPCN spectrum, the overall intensity of which was increased by using 0.3:80:170 mm. Hg pressure of PH₃-C₂N₂-N₂.

The first spectrum consists of two bands with prominent triplet *Q*-heads, the strongest band near 3014 Å and the other near 2857 Å (Tables 1 and 2), and is assigned to PCN. The absence of hydrogen is proved by the fact that the same spectrum is

TABLE 1

Wavelengths of intensity maxima in the 3014 Å band of PCN

$\lambda_{air}(\text{\AA})$	$v_{vac}(cm.^{-1})$
3056.4	32709
3040.4	32881
3030.6	32987
3029.4	33000
3024.0	33059
3020.2	33101
3019.1	33113
3018-2	33123
3014.4	33165
3008·6 3005·1	33228
3002·5	$33267 \\ 33296$
3002·5 3000·4	33319
2999.6	33328
2998.2	33344
2996.9	33358
2994.4	33386
2993.0	33402
2990.4	33431
2989.3	33443
2980.4	33543
$2966 \cdot 2$	33703

obtained from $PCl_3-C_2N_2-N_2$ mixtures and the structure PCN is preferred to that of CNP by its mode of formation and by analogy with the $NH_3-C_2N_2-N_2$ system where only NCN is observed. The sub-bands near 3014 Å are attributed to the

TABLE 2

Q Heads of PCN
$$[^{3}\Pi(a)-^{3}\Sigma^{-}]$$

Band	Sub-band	$\lambda_{air}(\text{\AA})$	$v_{vac}(cm.^{-1})$	Σν(cm1)
3014 Å	${}^3\Pi_2$ – ${}^3\Sigma^-$	3024.0	33059	100
	${}^3\Pi_1 - {}^3\Sigma^-$	3 014·4	33165	$\frac{106}{102}$
	${}^{3}\Pi_{0} {}^{-3}\Sigma^{-}$	3 005·1	33267	102
2857 Å	${}^3\Pi_2$ – ${}^3\Sigma^-$	$2865 \cdot 5$	34888	
	${}^{3}\Pi_{1}^{-3}\Sigma^{-}$	2856.8	34994	$\frac{106}{103}$
	${}^{3}\Pi_{0} - {}^{3}\Sigma^{-}$	$2848 \cdot 4$	25097	105

000-000 band of a ${}^{3}\Pi(a) - {}^{3}\Sigma^{-}$ transition of the linear PCN by analogy with NCN $({}^{3}\Pi_{u} \leftarrow {}^{3}\Sigma_{\rho})$.³ It is likely that the 2857 Å band is due to vibrational excitation in the v_1 or v_3 mode of the upper electronic state in view of the relatively large separation between the two bands (~ 1830 cm.⁻¹). The larger triplet splitting for PCN ($\sim 104 \text{ cm}$.⁻¹), as compared with the triplet splitting of ~ 40 cm.⁻¹ for NCN, is expected for the heavier molecule because of increased spin-orbit interaction.

The second spectrum consists of two weak and diffuse multiple sub-band systems, one near 3360 Å and the other near 3160 Å (Table 3), the appearance of which is very similar to the perpendicular band of the 3440 Å system of HNCN $\stackrel{\sim}{(A^2A'}$ \leftarrow $\stackrel{\sim}{X^2A''}$) analysed by Herzberg and Warsop.⁴

¹ N. Basco and K. K. Yee, preceding communication.

² Inorg. Synth., 1957, 5, 43.
³ G. Herzberg and D. N. Travis, Canad. J. Phys., 1964, 42, 1658.
⁴ G. Herzberg and P. A. Warsop, Canad. J. Phys., 1963, 42, 286.

TABLE	3
-------	---

Wavelength of HPCN bands						
System	$\lambda_{air}(\text{\AA})$	$v_{vac}(cm.^{-1})$	Δν(cm1)			
a	3377	29604	114			
	3364	29718	89			
	3354	29807	60			

31368

31507

31616

31707

31808

3187

3173

3162

3153

3143

b

The carrier of the second spectrum is assigned to HPCN by analogy with HNCN and because the spectrum was absent in the flash photolysis of the PCl₃-C₂N₂-N₂ mixture.

In view of the observed presence of other (unidentified) species in the ammonia-cyanogen system, both assignments must be considered as tentative in the absence of a complete spectroscopic analysis.

We thank the National Research Council of Canada for a research grant.

(Received, December 8th, 1967; Com, 1320.)

139

109

91

101