The Angular Dependencies of Long-range ¹⁹F–¹H Coupling Constants

By A. B. FOSTER* and R. HEMS

(Chester Beatty Research Institute, Institute of Cancer Research: Royal Cancer Hospital, Fulham Road, London, S.W.3)

and L. D. HALL and J. F. MANVILLE

(Department of Chemistry, The University of British Columbia, Vancouver 8, B.C., Canada)

RECENT studies of specifically fluorinated carbohydrate derivatives have shown that the angular and configurational dependencies of *vicinal*¹ and *geminal*² fluorine-proton couplings parallel those of the corresponding proton-proton parameters. We have now shown that the steric requirements for *long-range* ¹⁹F-¹H couplings across four saturated bonds (⁴J) are also similar to those of the corresponding ¹H-¹H couplings.

 β -D-Allopyranosyl fluoride tetra-acetate {(I), m.p. 149–151°, $[\alpha]_D$ –1.3° (CHCl₃)} shows† a long-range coupling of +3.6 Hz. between F_{1e} and H_{3e} whereas the corresponding β -D-glucopyranosyl fluoride tetra-acetate³ (II) shows no resolvable coupling between F_{1e} and H_{3a} . Similarly, 3fluoro-3-deoxy-a-D-glucopyranose tetra-acetate {(III), m.p. 109–111°, $[\alpha]_{\text{D}}$ +88° (CHCl₃), prepared from the β -anomer⁴ by equilibration using zinc chloride and acetic anhydride⁵} shows a 4 Hz. coupling between F_{3e} and H_{1e} whereas the corresponding β -anomer⁴ (IV) shows no resolvable coupling between F_{3e} and H_{1a} . In like fashion, H_{5e} of 3-fluoro-3-deoxy- β -D-xylopyranose triacetate {(V), m.p. 109—110°, $[\alpha]_{D} - 26^{\circ}$ (CHCl₃)} is coupled by $+4\cdot 2$ Hz. with F_{3e} whereas H_{5a} is not detectably coupled. In several instances, however, ${}^{4}J_{e,a}$ couplings have been resolved. Thus, for

3-fluoro-3-deoxy- β -D-glucopyranose tetra-acetate (IV), F_{3e} is coupled by 1.1 Hz. with H_{5a} whereas, for

2-chloro-2-deoxy- β -D-glucopyranosyl fluoride triacetate {(VI), m.p. 149–151°, $[\alpha]_{\rm D}$ +124°

[†] All spectra were measured with a Varian HA-100 spectrometer operating in the "frequency-sweep" mode for ¹H resonances and (at 94 MHz.) in the "locked, field-sweep" mode for ¹⁹F resonances.

(CHCl₃) F_{1e} is coupled by -0.8 Hz. with H_{3a} and by 0.7 Hz. with H_{5a}.

These results demonstrate that long-range $^{19}F^{-1}H$ couplings occur preferentially when the two nuclei have a 1,3-diequatorial relationship, or, more generally, when they have the "planar-M" relationship, which has previously⁶ been postulated as the preferred⁷ pathway for ⁴*I*, ¹H⁻¹H couplings.

In accord with recent findings⁷⁻⁹ for ¹H_¹H couplings, the signs of ⁴J, ¹⁹F_¹H couplings exhibit a configurational dependence, the ⁴J_{e,e} couplings being absolutely positive and the ⁴J_{e,a} couplings absolutely negative in sign. The signs were determined relative to vicinal ¹H_¹H coupling constants by the "spin-tickling" technique.¹⁰

Several derivatives exhibit long-range ${}^{19}F_{-1}H$ couplings across five bonds (⁵J). Most notable is a coupling of 1.5 Hz. in the spectrum of 3-fluoro-3-deoxy- β -D-glucose tetra-acetate (IV) which occurs between F_{3e} and one of the C_6 -protons; no resolvable coupling was detected for the other C_6 proton. The H_5 - H_6 couplings in compound (IV) were 2.5 and 4.3 Hz. On the basis of the known¹⁰ configurational dependence exhibited by vicinal couplings, the C_6 -proton which has the higher residence time antiparallel to the C_5 -O bond may be assigned the smaller J value and since this proton is also coupled to F_{3e} the conformation (VII) may be assigned to compound (IV). The stereochemical dependence of ${}^{5}J$ couplings is being further investigated but preliminary data for other fluorinated carbohydrates indicate that the favoured pathway closely approximates to that depicted in formula (VII).

The results reported herein emphasise the value of fluorinated carbohydrates of defined stereochemistry in studying F-H couplings.

(Received, November 30th, 1967; Com. 1278.)

¹ L. D. Hall and J. F. Manville, Chem. and Ind., 1965, 991; Canad. J. Chem., 1967, 45, 1299.

² L. D. Hall and J. F. Manville, unpublished results.

³ B. Helferich and R. Gootz, Ber., 1929, **62**, 2505; F. Micheel, A. Klemer, M. Nolte, H. Nordiek, L. Tork, and H. Westermann, Chem. Ber., 1957, **90**, 1612.

⁴ A. B. Foster, R. Hems, and J. M. Webber, Carbohydrate Res., 1967, 5, 292.

⁵ M. L. Wolfrom and A. Thompson, Methods Carbohydrate Chem., 1963, 2, 213.

- ⁶S. Sternhell, Rev. Pure Appl. Chem., 1964, 14, 15, and references cited therein.
- ⁷ L. D. Hall, J. F. Manville, and A. Tracey, Carbohydrate Res., 1967, 4, 514.
- ⁸ L. D. Hall and J. F. Manville, Carbohydrate Res., 1967, 4, 271.
- ⁹ K. G. R. Pachler and W. G. E. Underwood, Tetrahedron, 1967, 23, 1817.
- ¹⁰ H. Booth, Tetrahedron Letters, 1965, 411.