The Ultraviolet Spectra of *p*-Bis(pentamethyldisilanyl)benzene and Related Compounds

By HIDEKI SAKURAI,* HISAYOSHI YAMAMORI, and MAKOTO KUMADA (Department of Synthetic Chemistry, Kyoto University, Kyoto, Japan)

SINCE Hague and Prince¹ first reported the interesting u.v.-spectral properties of organopolysilanes systematic studies of the u.v. spectra of organopolysilanes have been undertaken.^{2,3}

We report on the interesting u.v. spectra of p- and *m*-bis(pentamethyldisilanyl)benzene and related compounds, which are the first examples of u.v. spectra observed for d_{π} - p_{π} - d_{π} conjugated systems. The data are listed in the Table.

The ${}^{1}L_{a}$ absorption maximum of phenylpentamethyldisilane at shifts to longer wavelength by 17 m μ on introduction of another pentamethyldisilanyl group at the *para*-position, whereas no bathochromic shift is observed for the *meta*-isomer. The absorption intensities of both compounds increase to a similar extent.

For a silicon atom bound to a phenyl ring, two effects have to be considered. Since it is more

TABLE

Compound			$\lambda_{\max} (m\mu)$	$\epsilon imes 10^{-4}$	Ref.
PhSiMe, ^a		••	211.0	1.00	5
PhSiMe, SiMe,			231.0	1.08	2
p-Me ₃ Si•C ₆ H₄SiMe ₃			226.0	1.79	This work
p-Me ₃ Si·C ₆ H ₄ SiMe ₃ ·SiMe ₃			239.0	1.80	This work
p-Me ₃ C·C ₆ H ₄ SiMe ₂ ·SiMe ₃			233 ·0	1.86	This work
p-Me ₃ Si·SiMe ₂ ·C ₆ H ₄ SiMe ₂ ·SiMe ₃		• •	248.0	2.45	This work
m-Me ₃ Si·SiMe ₂ ·C ₆ H ₄ SiMe ₂ ·SiMe ₃	••	• •	231.0	2.44	This work

Ultraviolet spectra of some phenyl-substituted silanes in n-hexane

^a In ethanol.

electropositive in nature than carbon, silicon exerts an electron-releasing inductive effect. On the other hand, because of the availability of 3d-orbitals, silicon has a resonance effect with drawing electrons from the benzene ring.⁴ The latter effect appears, however, not to be clear from the shifts in the ${}^{1}L_{\mathbf{8}}$ bands of phenyl-substituted monosilanes.5

Previously we concluded that p_{π} -SiSi systems would be essential to show the effects of enhanced conjugations observed in the u.v. spectra of the phenyl- or vinyl-substituted disilanes and trisilanes.² In $\pi - \pi^*$ transitions, the resonant interaction of the vacant d_{π} -orbitals of a silicon atom would be greater with the antibonding orbitals than with the bonding orbitals, and lowering of the d_{π} level by catenation of the silicon atoms would

result in a more enhanced conjugation of p_{π} -SiSi than of p_{π} -Si systems.

From a consideration of the symmetries of the antibonding orbitals, only the symmetric antibonding orbital could be lowered by interactions with d_{π} -orbitals. This orbital would be lowered considerably further by interactions with the d_{π} -orbitals of both disilarly groups in p-bis(pentamethyldisilanyl)benzene, while in the meta-isomer the effect due to the second disilaryl group should be small, as is observed experimentally.

A small bathochromic shift is observed for p-t-butylphenylpentamethyldisilane, indicative of the electron-withdrawing resonance effect of the pentamethyldisilanyl group.

(Received, December 18th, 1967; Com. 1354.)

¹ D. N. Hague and R. H. Prince, Proc. Chem. Soc., 1962, 300; Chem. and Ind., 1965, 1492; J. Chem. Soc., 1965, 4690. ² H. Sakurai and M. Kumada, Bull. Chem. Soc. Japan, 1964, 37, 1894; H. Sakurai, H. Yamamori, and M. Kumada, ibid., 1965, 38, 2024; H. Sakurai, K. Tominaga, and M. Kumada, ibid., 1966, 39, 1279.

⁸ H. Gilman, W. H. Atwell, and G. L. Schwebke, *Chem. and Ind.*, 1964, 1063; *J. Organometallic Chem.*, 1964, 2, 369;
⁹ H. Gilman, W. H. Atwell, and G. L. Schwebke, *Chem. and Ind.*, 1965, 4, 163; H. Gilman and W. H. Atwell, *ibid.*, p. 176;
¹⁰ H. Gilman and D. R. Chapman, *ibid.*, 1966, 5, 392; H. Gilman and P. J. Morris, *ibid.*, 1966, 6, 102.
⁴ C. Eaborn, "Organosilicon Compounds", Butterworths, London, 1960, ch. 3.

⁵ K. Bowden and E. A. Braude, *J. Chem. Soc.*, 1952, 1068.