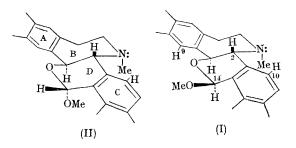
The Stereochemistry at C-14 for the Rhoeadine-type Alkaloids

By M. SHAMMA* and J. A. WEISS

(Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802)

and S. PFEIFER and H. DÖHNERT

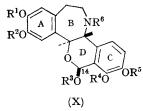

(Pharmazeutisches Institut der Humboldt-Universität, 112 Berlin-Weissensee, Germany)

THE rhoeadine alkaloids can be separated into two broad classes possessing respectively a *trans*- and a *cis*-fused B/D ring juncture, and the nature of this fusion can be readily derived from n.m.r. spectroscopy.¹ For all of the 28 known bases (Table 1), however, the relative stereochemistry at the anomeric centre, namely C-14, had not been established. Glaudine, epiglaudine, and oreodine have identical substitution patterns (Table 1), the first two belonging to the B/D *trans*-series, while oreodine is *cis*-fused.²

B/D trans-Series: The 'pseudo' first-order rates of methiodide formation were found to be 1.6×10^{-4} sec.⁻¹ for glaudine, and 2.1×10^{-4} sec.⁻¹ for epiglaudine.³ These very slow rates point to the hindered nature of the molecules in the vicinity of the N-methyl group, due to the presence of the C-10 aromatic hydrogen, so that in the free base the N-methyl group prefers to occupy the less hindered axial position as indicated in expressions (I) and (II).

In Table 2 are listed the n.m.r. data for glaudine and epiglaudine. The chemical shifts for the N-methyl, the C-14 methoxy, and the C-1 proton are the most important, and will be discussed in some detail.

Isomerization at C-14 is known to occur for some members of the *trans*-series with 0.004N-HCl in methanol, so that glaudine can be transformed into epiglaudine. In the n.m.r. spectrum of epiglaudine, the C-1 proton at $\delta 5.55^{\dagger}$ is substantially shifted downfield in relation to the corresponding value for glaudine which is at 5.18δ . This downfield shift for epiglaudine can be readily accommodated by assigning to epiglaudine the α -anomeric structure (II), in which the C-14 methoxy-oxygen is in the immediate vicinity of


the C-1 proton. Consequently, stereo-expression (I) can be attached to glaudine. Molecular models of (I) and (II) indicate a dihedral angle of about 150° between the C-1 and C-2 hydrogens for a calculated coupling constant of about 9 c./sec. The experimentally found $J_{1,2}$ for glaudine and epiglaudine lie between 9 and 9.5 c./sec.


The N-methyl group in epiglaudine (II) also

 $\dagger \delta \times (p.p.m.)$ measured in CDCl₃ with Me₄Si as internal standard.

TABLE 1

Known rhoeadine-type bases

$\begin{array}{l} \mathbb{R}^1 = \mathbb{R}^2 = \mathbb{R}^3 = \mathbb{R}^6 = \mathbb{M}e; \mathbb{R}^4 + \mathbb{R}^5 = \mathbb{C}H_2 . \\ \mathbb{R}^1 = \mathbb{R}^2 = \mathbb{R}^6 = \mathbb{M}e; \mathbb{R}^8 = \mathbb{H}; \mathbb{R}^4 + \mathbb{R}^5 = \mathbb{C}H_2 . \\ \mathbb{R}^1 = \mathbb{R}^2 = \mathbb{R}^3 = \mathbb{M}e; \mathbb{R}^4 + \mathbb{R}^5 = \mathbb{C}H_2; \mathbb{R}^6 = \mathbb{H} \end{array}$	Glaudin — Papavez
$\begin{array}{l} {\rm R}^1 + {\rm R}^2 = {\rm R}^4 + {\rm R}^5 = {\rm CH}_2; {\rm R}^3 = {\rm R}^6 = {\rm Me} . \\ {\rm R}^1 + {\rm R}^2 = {\rm R}^4 + {\rm R}^5 = {\rm CH}_2; {\rm R}^3 = {\rm H}; {\rm R}^6 = {\rm Me} \ . \\ {\rm R}^1 + {\rm R}^2 = {\rm R}^4 + {\rm R}^5 = {\rm CH}_2; {\rm R}^3 = {\rm Me}; {\rm R}^6 = {\rm H} \ . \end{array}$	Isorhoea Papaver
$R^1 = R^3 = Me; R^2 = R^6 = H; R^4 + R^5 = CH_2$	Papaver (Porphy
$\begin{split} \mathrm{R}^1 &= \mathrm{R}^3 = \mathrm{R}^6 = \mathrm{Me} ; \mathrm{R}^2 = \mathrm{H} ; \mathrm{R}^4 + \mathrm{R}^5 = \mathrm{CH}_2 . \\ \mathrm{R}^1 &= \mathrm{R}^6 = \mathrm{Me} ; \mathrm{R}^2 = \mathrm{R}^3 = \mathrm{H} ; \mathrm{R}^4 + \mathrm{R}^5 = \mathrm{CH}_2 . \end{split}$	N-Meth roxine
$\begin{array}{l} {\rm R}^1 = {\rm R}^2 = {\rm R}^3 = {\rm R}^4 = {\rm R}^5 = {\rm R}^6 = {\rm Me} . & . \\ {\rm R}^1 = {\rm R}^2 = {\rm R}^4 = {\rm R}^5 = {\rm R}^6 = {\rm Me} ; {\rm R}^8 = {\rm H} \ . & . \\ {\rm R}^1 = {\rm R}^2 = {\rm R}^3 = {\rm R}^4 = {\rm R}^5 = {\rm Me} ; {\rm R}^6 = {\rm H} \ . & . \end{array}$	Alpinine Papaver

$ \begin{array}{c} 0 \\ R^{3}O \\ (Y) \end{array} $	$ \begin{array}{c} 0 \\ R^{3}O \\ (Z) \end{array} $ $ \begin{array}{c} R^{4}O \\ OR^{5} \\ OR^{5} \end{array} $				
B/D trans, unstable at C-14 X	B/D trans, stable at C-14 Y	B/D <i>cis</i> , stable at C-14 Z			
Glaudine — Papaverrubine B	Epiglaudine Glaucamine Epipapaverrubine B	Oreodine Oreogenine Papaverrubine F			
Isorhoeadine Papaverrubine A	Epiisorhoeadine Isorhoeagenine Epipapaverrubine A	Rhoeadine Rhoeagenine Papaverrubine E			
Papaverrubine D (Porphyroxine)	Epipapaverrubine D (Papaverrubine C)				
<i>N</i> -Methylporphy- roxine	N-Methylepi- porphyroxine N-Methyl-14-O- demethylepiporphy- roxine	<i>cis-N-</i> Methylepi- porphyroxine			
Alpinine — Papaverrubine G	Epialpinine Alpinigenine —	cis-Alpinine cis-Alpinigenine			

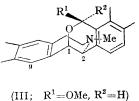
 R^1O_1

R

TABLE 2

N.m.r. data (8 values)

		N-CH3	14-OMe	14-H	1-H	2-H	9-H	in 0.004N-HCl in methanol
Glaudine (I)	 	2.23	3.68	5·76	5·18(d)	4·06(d)	7.33	Unstable
Epiglaudine (II)	 	$2 \cdot 30$	3.55	5.73	5•55(d)	4.00(d)	7.30	Stable
Oreodine (III)	 ••	$2 \cdot 32$	3.57	5.75	5·05(d)	3∙66 (d)	6.78	Stable


appears downfield at $\delta \ 2{\cdot}30,$ whereas the corresponding absorption for glaudine (I) is at $\delta 2.23$. This small downfield shift in epiglaudine may again be caused by the proximity of the N-methyl protons to the α -axial oxygen at C-14 as indicated in expression (II). The downfield shift is weaker in this case because of the larger distance involved from the C-14 oxygen.

It has been established that anomeric axial methoxy-hydrogens appear upfield from their equatorial counterparts,4 and indeed the C-14 methoxy-protons for epiglaudine (II) fall at δ 3.55, while the corresponding value for glaudine (I) is at δ 3.68. No anomaly is involved with the equatorial methoxy-group in glaudine isomerizing in

acid to the more stable axial position since the anomeric effect predicts such a change.⁵ The stereochemistry at C-14 for the remaining known B/D trans-bases follow and is indicated in Table 1, n.m.r. and/or C-14 equilibration data for these compounds having already been published.²

Stability in

B/D cis-Series: All the bases in the B/D cisseries are stable in acid.² Oreodine was found to have an N-methylation rate of moderate magnitude, $23 \cdot 1 \times 10^{-4}$ sec.⁻¹, indicating partial hindrance around the nitrogen atom. The favoured conformation (III) is in accord with such a rate, accessibility to the nitrogen atom being somewhat hindered by ring D. The alternate formulation (IV) can be discarded since it would result in inordinate hindrance at the nitrogen by the C-14 methoxy-group with a subsequent very slow rate of methylation. Additional support for the assignment of stereo-structure (III) to all the B/D cis-fused rhoeadine type bases is forthcoming from n.m.r. data.

(IV: $R^1 = H, R^2 = OMe$)

The C-9 hydrogen in oreodine (Table 2) appears relatively upfield at δ 6.78, since the oxygen atom incorporated as part of ring D is distant from C-9.6 Such is not the case for the trans-bases where the oxygen atom in question and the C-9 hydrogen are very close [cf. (I) and (II)], with a resultant

downfield shift to δ 7.33 and δ 7.30 for glaudine and epiglaudine, respectively.

Furthermore, the C-14 methoxy-group in oreodine (III) is situated at 3.57δ , and this value compares favourably with that for epiglaudine (II) which is 3.55δ . If the C-14 methoxy-group in oreodine were to be as in (IV), a downfield shift would have been observed due to the proximity of the methoxy-group to the nitrogen atom, and such a shift is not detected. Finally, Stuart-Briegleb molecular models indicate that the dihedral angle between the C-1 and C-2 hydrogens in structure (III) is about 65°, for a calculated $J_{1,2}$ of about 1.5 c./sec. The corresponding experimentally found value for oreodine is 2 c./sec. The elucidation of the stereochemistry of oreodine at C-14 allows stereochemical assignments to the remaining known cis-fused bases (Table 1).

This work was supported by a grant from the National Research Foundation (to M.S.).

(Received, December 18th, 1967; Com. 1355.)

¹ F. Šantavý, J. L. Kaul, L. Hruban, L. Dolejš, V. Hanuš, K. Bláha, and A. D. Cross, Coll. Czech. Chem. Comm., 1965, 30, 3479.

² I. Mann, H. Döhnert, and S. Pfeifer, Pharmazie, 1966, 21, 494; for additional information on the rhoeadine alkaloids, see Pfeifer, I. Mann, and L. Kuhn, Pharm. Zentralhalle, in the press.

³ The rates of methiodide formation were measured on 3 mg. of sample in acetonitrile at 25° as described by M. Shamma and J. M. Richey, J. Amer. Chem. Soc., 1963, 85, 2507. For other studies using rates of methodide forma-tion, see M. Shamma, J. A. Weiss, and R. J. Shine, *Tetrahedron Letters*, 1967, 2489; and I. Ognyanov, B. Pyuskyulev, M. Shamma, J. A. Weiss, and R. J. Shine, *Chem. Comm.*, 1967, 579. The rates of glaucamine, rhoeadine, and rhoe-agenine were also measured for the present study, and found to be 1.5×10^{-4} , 22.5×10^{-4} , and 24.9×10^{-4} sec.⁻¹ respectively.

⁴L. D. Hall, Adv. Carbohydrate Chem., 1964, 19, 68.

J. T. Edward and I. Puskas, Canad. J. Chem., 1962, 40, 711.
 A. D. Cross, I. Mann, and S. Pfeifer, Pharmazie, 1966, 21, 181.