Phenolic Oxidative Coupling of 1-(3-Phenylpropyl)isoquinoline Derivatives

By T. KAMETANI,* T. SATOH, and H. YAGI

(Pharmaceutical Institute, School of Medicine, Tohoku University, Kitayobancho, Sendai, Japan)

and H. IIDA and S. TANAKA

(Tokyo College of Pharmacy, Kashiwagi, Shinjuku, Tokyo, Japan)

In earlier Communications^{1,2} we reported that phenolic oxidative coupling reactions of (\pm) -Nmethylcoclaurine (Ia) and the homobenzylisoquinoline derivative (IIa) gave (\pm) -glaziovine³ (Ib) and the homoproaporphine (IIb), respectively. Further research on the preparation of homoproaporphines has been carried out.⁴⁻⁶

We now report the synthesis of the dienone (IIIb) by phenolic oxidation of the 1-(3-phenylpropyl)isoquinoline derivative (IIIa) as a simple, though interesting, extension of the above dienone syntheses. The best conditions for phenolic oxidation of 1,2,3,4-tetrahydro-7-hydroxy-1-[3-(4-hydroxyphenyl)propyl]-6-methoxy-2-methylisoquinoline (prepared according to the usual methods) involved a two-phase system of chloroform and aqueous potassium ferricyanide with ammonium acetate in ammonia.

By this method, the desired dienone (IIIb), $C_{20}H_{23}NO_3$, m.p. 153—154°, was obtained consistently in analytically pure state in about 1% yield after purification by column chromatography on silica gel.

CHEMICAL COMMUNICATIONS, 1968

The structure of the oxidation product was supported by the i.r. spectrum, which showed typical dienone absorptions at ν_{max} 1678 and 1620 cm.⁻¹ (in chloroform), and by the u.v. spectrum which showed λ_{max} 227, 273, and 307 m μ

(in methanol) (log ϵ 4.37, 3.80, and 3.51 respectively).

Further, its n.m.r. spectrum† showed the expected N-methyl signal at τ 7.50 and O-methyl signal at τ 6.20 as two singlets, and a singlet at τ 3.50 (1H) was assigned to a single aromatic proton of the isoquinoline ring. In addition, it showed the signals of the olefinic protons at τ 3.60—4.10 (α and α') and τ 2.80—3.40 (β and β') as AA'BB'-type multiplets with fine structure. The α - and α' -protons show somewhat more complicated signals than those of β - and β' protons because of the marked interaction across the ring. These spectral data and analytical values confirmed the structure of the oxidised product to be (IIIb).

(Received, December 11th, 1967; Com. 1331.)

† N.m.r. spectrum was run at 60 Mc./sec. in CDCl₃ solution with Me₄Si as an internal standard.

- ¹ T. Kametani, and H. Yagi, Chem. Com., 1967, 366; J. Chem. Soc. (C), 1967, 2182.
- ² T. Kametani, K. Fukumoto, H. Yagi, and F. Satoh, Chem. Comm., 1967, 878.
- ³ D. H. R. Barton, Chem. in Britain, 1967, 3, 330 [G. M. Chapman, Ph.D. Thesis, London, 1966].
- ⁴ A. R. Battersby, R. B. Bradbury, R. B. Herbert, M. H. G. Munro, and R. Ramage, Chem. Comm., 1967, 450.
- ⁵ A. R. Battersby, E. McDonard, M. H. G. Munro, and R. Ramage, Chem. Comm., 1967, 934.
- ⁶ T. Kametani, K. Fukumoto, H. Yagi, and F. Satoh, Chem. Comm., 1967, 1103.