Chemical Reactions of Boron Atoms

By P. L. Timms†

(Department of Chemistry, University of California, Berkeley, California 94720)

SEVERAL reports have appeared over the last three years of preparative-scale reactions of unstable gaseous species formed at high temperatures, with other compounds at low temperatures.^{1,2} Many new compounds have been synthesised by these atom-molecule or molecule-molecule co-condensation reactions.

This work is concerned with the reactions of boron atoms. A boron rod was heated by electron bombardment to $2500-2800^{\circ}$ at a pressure of 10^{-6} mm. The boron vapour, believed to be very largely B₁ in a ²P electronic state, was condensed on the liquid-nitrogen-cooled walls of the vacuum chamber. Other volatile compounds could be sprayed into the chamber and co-condensed with the boron atoms on the cold walls.

Co-condensation of boron vapour with BF₃, BCl₃, PCl₃, HCl, HBr, NH₃, C₆H₆, and CO₂, resulted in each case in complete reaction of the boron and the formation of volatile or polymeric products. When boron and boron trifluoride were deposited at -196° in alternate layers, rather than simultaneously, no reaction was detected. Cocondensation is thus an essential condition for obtaining reactions with boron atoms.

For each of the hydrogen-containing molecules HCl, HBr, NH₃, and C₆H₆, the initial product of condensation with boron atoms at -196° , evolved gaseous hydrogen on warming to between -170° and -100° . With HCl and HBr, the other

volatile products were BX₃ and HBX₂ (where X = Cl or Br), some free halogen, and tiny amounts of B₂Cl₄ from HCl and B₂H₅Br from HBr. The stoicheiometry can be represented very approximately as

 $\begin{array}{l} 20\mathrm{B} + 50\mathrm{HX} \rightarrow 8\mathrm{BX}_3 + 2\mathrm{HBX}_2 + 0.5\mathrm{X}_2 + \\ & 18\mathrm{HX} + 15\mathrm{H}_2 + (\mathrm{BX})_n \ddagger \end{array}$

The nature of the products suggests a series of freeradical reactions, perhaps started by the interaction of a boron atom with a hydrogen halide molecule to give HBX.

Apart from hydrogen the only product from boron atoms and ammonia was a white polymer. This polymer liberated hydrogen but no volatile borane amines or borazine on heating to 200°. A golden coloured polymer, sensitive to air, was obtained from boron and benzene, which had the approximate composition $C_6H_3B_4$. This also yielded only hydrogen on heating to 300°.

The main products of the reaction of BF₃ and BCl₃ with boron were solid BF or BCl polymers, although about 15% of the boron atoms were recovered as B₂F₄ or B₂Cl₄. The BF₃-B reaction gave no B₃F₅ or higher volatile liquid boron fluorides, products which are characteristic of the reaction of BF and BF₃.² Phosphorus trichloride and boron atoms gave some BCl₃ and P₂Cl₄, but mainly a solid polymer containing phosphorus,

[†] Present address: Department of Chemistry, The University, Bristol 8.

[‡] Not measured.

boron, and chlorine, which reacted with water to give phosphine.

The condensate formed from CO_2 and B at -196° evolved CO with emission of yellow light at about -150° . A fine dust was carried by the mixture of CO and CO_2 pumped out of the vacuum chamber. This dust was shown by chemical analysis and X-ray studies to be a mixture of

boric oxide, boron carbide, and a BO polymer. The simplest reaction of boron and CO_2 would be $CO_2 + B \rightarrow CO + BO$. Some further reduction of CO must also occur to give boron carbide.

This work was supported by the United States Army Research Office, Durham, N.C.

(Received, December 22nd, 1967; Com. 1375.)

¹ P. S. Skell, L. D. Westcott, J. P. Golstein, and R. R. Engle, *J. Amer. Chem. Soc.*, 1965, 87, 2829; P. S. Skell and P. W. Owen, *ibid.*, 1967, 89, 3933; P. L. Timms, R. A. Kent, T. C. Ehlert, and J. L. Margrave, *ibid.*, 1965, 87, 2823. ² P. L. Timms, *J. Amer. Chem. Soc.*, 1967, 89, 1629.