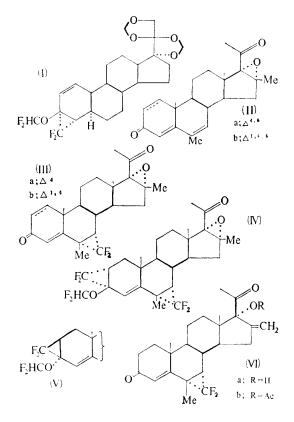
Addition of Difluorocarbene to Steroidal Unsaturated Ketones: Formation of Novel Difluoromethyl Ethers

By T. L. POPPER,* F. E. CARLON, H. M. MARIGLIANO, and M. D. YUDIS


(Natural Products Research Department, Schering Corporation, Bloomfield, New Jersey 07003)

THE addition of difluoro- and dichloro-carbene to unsaturated steroids has been shown by Cross and his co-workers¹ to proceed readily. Subsequently, J. H. Fried and his colleagues^{2,3} reported the formation of gem-difluorocyclopropanes by the addition of difluorocarbene to steroidal unsaturated ketones, and the formation of the difluoromethyl ether bisadduct (I) from the corresponding Δ^{1} -3-ketosteroid.² We now report the isolation of two new steroidal difluoromethyl ethers formed by incorporation of three CF₂ moieties into the steroid nucleus.

On reaction of (IIa) with excess of sodium chlorodifluoroacetate in triglyme at 170°, three compounds were formed which were separated by chromatography. The expected $6\alpha,7\alpha$ -difluoromethylene adduct (IIIa)[†] was isolated in 33% yield: [m.p. 169—170°; $[\alpha]_D^{25} + 98^\circ$; λ_{max} (MeOH) 244.5 m μ (ϵ 15,100); n.m.r. δ 1.11 and 1.13 (C-10 and C-13 CH₃), 1.40 (C-6 CH₃, t, J_{HF} 2.4 c./sec.), 6.03 (C-4 H); M calc.: 404, found: M^+ (m/e) 404]. α -Addition of difluorocarbene to the C-6 double bond is based on the absence of fluorine C-10 methyl proton coupling expected for the β oriented difluoromethylene ring.⁴

Two additional products, each with three equivalents of diffuorocarbene, were isolated in lesser amounts: (IV), 15% [m.p. 157—161°; $[\alpha]_D^{25} + 58^\circ$; n.m.r. δ 1.06 (C-10 and C-13 CH₃), 1.39 (C-6 CH₃, t, $J_{\rm HF}$ 2.5 c./sec.), 5.81 (C-4, H, b), 6.32 (C-3, OCHF₂, q, $J_{\rm HF_1}$ 72.8, $J_{\rm HF_2}$ 74.0 c./sec.); M calc.: 504, found: M^+ (m/e) 504] and (V), 5% [m.p. 188—191°; $[\alpha]_D^{25} - 20^\circ$; $\lambda_{\rm max}$ (MeOH) 217 m μ (ϵ 8,330); n.m.r. δ 1.03 (C-13 CH₃), 1.10 (C-10 CH₃), 1.34 (C-6 CH₃, t, $J_{\rm HF_2}$ 2.5 c./sec.), 5.80 (C-4 H, b), 6.32 (C-3 OCHF₂, q, $J_{\rm HF_1} = 73.5$, $J_{\rm HF_2} = 74.7$ c./sec.); M calc.: 504, found: M^+ (m/e) 504].

The assignments of structures (IV) and (V) to the minor products are supported by the following observations. The mass spectral data and the loss of $\alpha\beta$ -unsaturated carbonyl absorptions in the i.r. and the u.v. spectra are consistent with the addition of three equivalents of difluorocarbene to the 3-keto-4,6-diene system. A characteristic n.m.r. signal is observed for the difluoromethyl ether proton⁵ in both products. The $2\alpha, 3\alpha, 6\alpha, 7\alpha$ -bisdifluoromethylene configuration is assigned to (IV) since a sharp signal is observed for the C-10 methyl proton resonance with no indication of long range fluorine coupling. However, the n.m.r. spectrum of the isomeric product (V) showed a broadened signal for the C-10 methyl protons ($W_{\frac{1}{2}} = 2.5$) compared to that of the C-13 methyl proton band ($W_{\frac{1}{2}} = 1.0$ c./sec.). This small but significant fluorine C-10 methyl proton coupling is consistent with a $2\beta, 3\beta$ -difluoromethylene configuration. Molecular models show that introduction of the C-4 double bond should decrease the magnitude of

[†] Satisfactory elementary analyses have been obtained for all new compounds. Rotations were determined in dioxane. N.m.r. spectra measured on a Varian A-60-A spectrometer in $CDCl_3$ solutions using Me₄Si as internal standard. Mass spectra were determined on a CEC 21-103 spectrometer using a heated inlet system at a temperature of 200-230°. We thank Dr. T. Traubel for these measurements.

this coupling compared to the saturated ring system. Since the 6β , 7β -diffuoromethylene configuration shows a relatively large fluorine C-10 methyl proton coupling $(J_{HF} 2-3 \text{ c./sec.}),^{6}$ (V) is favoured over the $2\alpha, 3\alpha, 6\beta, 7\beta$ - or the $2\beta, 3\beta, 6\beta, 7\beta$ -bisdifluoromethylene structures. The u.v. absorption maximum observed for (V) λ_{max} (MeOH) 217 m μ $(\epsilon 8,330)$ and not for (IV) further substantiates the relative stereochemical assignments of the A-ring cyclopropyl group. Kosower' has shown that interaction of a cyclopropyl and a carbonyl group, resulting in a bathochromic shift of the $\pi \rightarrow \pi^*$ transition, is maximal when the plane of the ring and the p-orbitals of the carbonyl group are parallel. Dreiding models show that the plane of the 2,3-cyclopropyl group is approximately parallel to the plane of the p-orbitals of the C-4 double bond for (V) and close to perpendicular for (IV). A similar u.v. maximum $[\lambda_{max} (C_6H_{12}) 218 \text{ m}\mu]$ $(\epsilon 9,000)$] was observed for the $\alpha\beta$ -unsaturated cyclopropyl chromophore in 3β -acetoxy- 5α , 6α dibromomethylene-7,22-ergostadiene.8

Treatment of (IIb) under similar difluorocarbenylation conditions resulted in (IIIb) [m.p. 223—225.5°; λ_{max} (MeOH) 243 m μ (ϵ 14,950); n.m.r. δ 1·12 (C-13 CH₃), 1·25 (C-10 CH₃), 1·45 (C-6 CH₃, t, J_{HF} 2·4), 6·23 (C-2 H, q, $J_{\text{H}_1\text{H}_2} = 11$, $J_{\text{H}_{2}\text{H}_{4}} = 2$), 6·33 (C-4 H), 6·95 (C-1 H, d, $J_{\text{H}_{1}\text{H}_{4}} = 11$ c./sec.); M calc.: 402, found: M^+ (m/e) 402].

Reaction of (IIIa) with catalytic amounts of sulphuric acid in dioxan⁹ gave (VIa), which on acetylation with acetic acid, trifluoroacetic anhydride, and toluene-p-sulphonic acid at room temperature¹⁰ yielded (VIb) [m.p. 205-207°; $[\alpha]_{D}^{25}$ -60° ; $\lambda_{\rm max}$ (MeOH) 244.5 m μ (ϵ 14,100); n.m.r. δ 0.74 (C-13 CH₃), 1.14 (C-10 CH₃), 1.42 (C-6 CH₃, t, $J_{\rm HF} = 2.4$ c./sec.), 6.04 (C-4 H)]. (VIb) was also obtained when 17α -acetoxy-6-methyl-16methylene-4,6-pregnadien-3,20-dione was treated with an excess of sodium chlorodifluoroacetate in triglyme at 200°.

(Received, January 26th, 1968, Com. 101.)

¹L. H. Knox, E. Velarde, S. Berger, D. Cuadriello, P. W. Landis, and A. D. Cross, J. Amer. Chem. Soc., 1963, 85, 1581.
² C. Beard, N. H. Dyson, and J. H. Fried, *Tetrahedron Letters*, 1966, 3281.
³ C. Beard, I. T. Harrison, L. Kirkham, and J. H. Fried, *Tetrahedron Letters*, 1966, 3287.
⁴ D. W. Landis, *I. Amer. Chem. Soc.*, 1962, 84, 1736, 3784; 1964, 86, 4005.

⁴ A. D. Cross and P. W. Landis, J. Amer. Chem. Soc., 1962, 84, 1736, 3784; 1964, 86, 4005; A. D. Cross, ibid., 1964, 86, 4011.

⁵ B. H. Arison, T. Y. Shen, and N. R. Trenner, J. Chem. Soc., 1962, 3828; J. E. Baldwin and D. J. Fenoglio, J. Phys. Chem., 1966, 70, 227.

⁶G. Tarzia, N. H. Dyson, I. T. Harrison, J. A. Edwards, and J. H. Fried, Tetrahedron Letters, 1967, 387.

⁷ E. M. Kosower, Proc. Chem. Soc., 1962, 25.
⁸ M. Z. Nazer, J. Org. Chem., 1965, 30, 1737.
⁹ D. N. Kirk, V. Petrow, and D. M. Williamson, J. Chem. Soc., 1961, 2821.

¹⁰ E. Shapiro, L. Finckenor, H. Pluchet, L. Weber, C. H. Robinson, E. P. Oliveto, H. L. Herzog, I. I. A. Tabachnick, and E. Collins, Steroids, 1967, 9, 143.