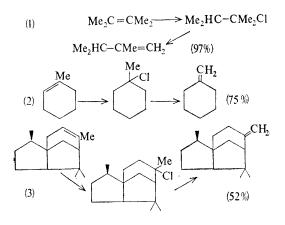
Hofmann Elimination in the Reaction of 1-Methylcycloalkyl Chlorides with Bulky Alkoxides. A Convenient Procedure for the Conversion of 1-Methylcycloalkenes into Methylenecycloalkanes *via* Hydrochlorination-Elimination. Synthesis of β-Cedrene

By Shrinivas P. Acharya and Herbert C. Brown* (Richard B. Wetherill Laboratory, Purdue University, Lafayette, Indiana 47907)

THE marked preference exhibited by potassium triethylmethoxide in directing elimination in simple aliphatic halides towards the Hofmann direction^{1,2} has now been observed to be relatively general in cycloalkyl derivatives. Consequently, hydrochlorination of 1-methylcycloalkenes in the automatic hydrochlorinator³ followed by elimination by potassium triethylmethoxide or potassium tricyclopentylmethoxide⁴ provides a highly convenient shift of the double bond to yield the methylene derivatives. Typical applications are shown in reactions (1)—(3).

It was our need for β -cedrene which led us to develop this procedure. α -Cedrene is readily available from natural sources. However, β cedrene has been available hitherto only with considerable difficulty.⁵ Attempts to isomerize α to β -cedrene by recognised procedures^{6,7} failed. The present method provides a highly convenient route from α - to β -cedrene (reaction 3) and appears to be generally applicable for the movement of a tertiary double bond from the preferred endocyclic to the less stable exocyclic position.


The recommended procedure involves saturation of the olefin in ether at -70° with hydrogen chloride to form the tertiary chloride,³ which, after removal of ether at 0°, is not purified but is immediately treated with potassium triethylmethoxide in excess at 60°. The elimination requires *ca.* 12 hr.

Four different procedures were studied.

(A) Potassium (100 mmole) was dissolved in triethylmethanol (28 ml) (140°, $2 \cdot 5$ hr) to form a $3 \cdot 0$ M solution. This remains as a thick red solution at 60° but solidifies at room temperature.

(B and C) 2.0 M-Solutions of potassium triethylmethoxide in xylene or undecane were prepared from 120 mmoles of the alcohol and 100 mmoles of potassium in 45 ml. of xylene or undecane, (160°, 6 hr.). Both these reagents remained as clear red liquids at room temperature.

(D) $2.0 \text{ M-Solution of potassium tricyclopentyl$ methoxide was prepared from 25 mmoles oftricyclopentylmethanol and 20 mmoles of potassium in 6 ml. of undecane. This remains insolution at 70°, but solidifies at room temperature.

			Procedure A		Procedure B		Procedure C		Procedure D	
Olefin		Time, hr.	Yield,ª %	Methylene derivative %	Yield,ª	Methylene de rivative %	Yield, ^a %	Methylene derivative %	Yield, ^a %	Methylene derivative %
2,3-Dimethylbut-2-ene	••	$12 \\ 24$	100	95	33 64	88 95	80 97	97 96	85 100	97 97
1-Methylcyclopentene	••	12	96 840	4 0 ^b	100	39p	94	38p	80e	47
1-Methylcyclohexene	••	12	100 84°	62 61 ^b	99	57 61b	100	60 64b	100	75 776
1-Methylcycloheptene	••	12	80c	75b	100	53 54b	89	73	92	76
a-Cedrene		12	85d	52b						

TABLE

Results of the hydrochlorination-elimination procedure

^a Analysis by g.l.c. for total olefins. All analyses by Golay squalene column g.l.c. unless otherwise indicated. ^b Isomer distribution by ¹H n.m.r. ^c Isolated yield on 10 mmole scale using ²M solution in triethyl methanol. ^d Isolated yield on 5 mmole scale using ²M solution in triethylmethanol. ^e Isolated yield after 6 hr. on a 10 mmole scale.

To 2 mmoles of hydrochloride containing ca. 1 mmole of n-octane as an internal standard, 6 mmoles of the above reagents were added individually under nitrogen, and heated (oil bath) in a stoppered tube for 12 hr. at 60°. The products were isolated by distillation at room temperature under vacuum using a spiral dry-ice trap. The results are summarized in the Table.

The marked preference exhibited by potassium triethylmethoxide in the 2-halogenoalkanes for elimination at the terminal position was said to be due to steric effects.¹ It was argued that the bulky alkoxide group would find it easier to attack a less hindered primary hydrogen atom on the terminal methyl group rather than a more hindered secondary or tertiary hydrogen atom within the chain. Although this interpretation has been questioned,⁸ the present results show that the marked preference of potassium triethylmethoxide for Hofmann elimination is general.

This research was supported by a grant from the National Institute of Health.

(Received, January 15th, 1968; Com. 050.)

- ¹ H. C. Brown, I. Moritani, and Y. Okamoto, J. Amer. Chem. Soc., 1956, 78, 2193.
- ² D. L. Griffith, D. L. Meges, and H. C. Brown, *Chem. Comm.*, 1968, 90.
 ³ H. C. Brown and M.-H. Rei, *J. Org. Chem.*, 1966, **31**, 1090.
- ⁴ Tricyclopentylmethanol can now be conveniently obtained by hydroboration-carbonylation of cyclopentene ⁶ M. I. Goryaev and G. A. Tolstikov, Proc. Acad. Sci., (U.S.S.R.), 1961, 139, 673.
 ⁶ S. P. Acharya and H. C. Brown, J. Amer. Chem. Soc., 1967, 89, 1925.
 ⁷ G. Ohloff, K. H. Schulte-Elte, and W. Giersch, Hebv. Chim. Acta, 1965, 48, 1665.
- ⁸ D. H. Froemsdorf and M. E. McCain, J. Amer. Chem. Soc., 1965, 87, 3983; D. H. Froemsdorf, M. E. McCain, and
- W. W. Wilkison, ibid., 3984; D. H. Froemsdorf and M. D. Robins, ibid., 1967, 89, 1737.