The Extent of Chelation in some Chromium(III)-EDTA Complexes

By R. N. F. THORNELEY and A. G. SYKES*

(Department of Inorganic and Structural Chemistry, The University, Leeds 2)

DETAILS of the preparations and experiments relating to the extent of chelation in some chromium(III)-EDTA complexes are reported here. Contrary to an earlier report¹ we have been unable to prepare the sexadentate complex [Cr^{III}Y]⁻ from [Cr^{III}YH(H₂O)] (ethylenediaminetetraacetate or EDTA \equiv Y⁴⁻). When the latter is treated with 0·1M-sodium hydroxide the product is in all probability the quinquedentate oxochromium(III) complex [Cr^{III}Y(O)]³⁻, and not² the quadridentate dihydroxo-complex [Cr^{III}Y(OH)₂]³⁻

The complex $[Cr^{III}YH(H_2O)]$ in which the

EDTA is quinquedentate is well known.³⁻⁵ Aciddissociation constants have been measured²⁻⁴ and are as shown in equation (1)

$$[Cr^{III}YH(H_{2}O)] \underbrace{\xrightarrow{pK_{a} \sim 3}}_{[Cr^{III}Y \cdot (H_{2}O)]^{-} + H^{+} \underbrace{pK_{a} \sim 7}_{[Cr^{III}Y(OH)]^{2-} + 2H^{+} (1)}$$

The most favourable conditions for the formation of a sexadentate complex $[Cr^{III}Y]^-$ are (probably)

at around pH 5,6 when the unco-ordinated carboxyl group of the EDTA is unprotonated. Under these conditions one would expect the equilibrium in (2)

$$[Cr^{III}Y(H_2O)] \rightarrow [Cr^{III}Y] \rightarrow H_2O \qquad (2)$$

to be most favourable. From such solutions Hoard et al.¹ have prepared samples of the complexes Rb,CrY,2H₂O and NH₄,CrY,2H₂O, which they claim are isomorphous with similar salts of [Co^{III}Y]⁻ and [Al^{III}Y]⁻ and are therefore sexadentate. Since this is the only case in which a sexadentate chromium(III)-EDTA complex has been reported, we attempted to repeat this work. Samples of complexes which analysed satisfactorily for Rb,CrY,2H₂O and NH₄,CrY,2H₂O were obtained in good yields, but further experiments have shown that in both cases a water molecule remains co-ordinated to the chromium. Thus on leaving the samples to stand over P_2O_5 for seven days, and on heating to 120°, only one of the two water molecules is removed. On heating to higher temperatures using a thermogravimetric balance, decomposition occurs ($>300^\circ$), before loss of the second water molecule. Diffuse reflectance spectra and spectra of aqueous solutions, pH 4-5, recorded within 1-2 min. of their preparation, are as expected for [CrIIIYH(H_oO)] and the related conjugate-base form $[CrY(H_{2}O)]^{-4}$

The products obtained in the reactions of chromium(II)-EDTA (pH 3-4) with a variety of oxidants including Cl₂, Br₂, CrCl²⁺, CrF²⁺, and O₂ have been identified. The reactions are all rapid and from visible spectra recorded within 3 min. of mixing, the only products are [Cr^{III}YH(H₂O)] and $[Cr^{III}Y(H_2O)]^-$. Since the replacement of X⁻ by H₂O in complexes of the type $[Cr^{III}YH(X)]^{-1}$ $(X^- = Cl^-, Br^-, etc.)$ is unlikely to be rapid, we conclude that such reactions are of the outer-Conversion of [Cr^{III}Y]- to sphere type. $[Cr^{III}YH(H_2O)]$ and $[Cr^{III}Y(H_2O)]^-$ would also be expected to be slow.⁶

In aqueous solutions pH 8-9²⁻⁴ the complex $[Cr^{III}YH(H_2O)]$ is present as $[CrY(OH)]^{2-} (\epsilon_{max})$ = 115 at 594 m μ , and 86 at 392 m μ). At still higher pH's further spectral changes have been attributed to the conversion of [CrIIIY(OH)]²⁻ into the quadridentate complex $[CrY(OH)_2]^3$, pKa = 12.2,² ($\epsilon_{max} = 65$ at 575 m μ and 86 at 407 m μ).

At 25° and in 0.1M-sodium hydroxide ca. 15 min. are required for this reaction to proceed to completion (rate constant ca. 5×10^{-3} sec.⁻¹). The solutions obtained are stable for at least 24 hr. On acidifying to pH ~ 4.5 (buffered), the formation of $[CrYH(H_2O)]$ and $[CrY(H_2O)]^-$ is rapid and stopped-flow experiments have indicated a rate constant $> 10^3$ sec.⁻¹. We suggest that this reaction is far too rapid for the conversion of a guadridentate chromium(III)-EDTA complex to a quinquidentate form, and that the complex formed at pH > 12 is in all probability $[Cr^{III}Y(O)]^{3-}$.

Attempts to prepare the complex [CrIIIYH(Cl)]by treating $[Cr^{III}YH(H_2O)]$ with concentrated hydrochloric acid resulted in a partial dissociation, *i.e.* uncoiling of the EDTA ligand. On cooling to 0° crystals of [CrIIIYH₃(Cl)₂(H₂O)],3H₂O (analysis, dehydration experiments, equivalent weight determinations) can be obtained within 1-2 hr. If solutions are allowed to stand for longer periods, *i.e.* overnight, there is further dissociation of the EDTA from the chromium. The complex [Cr^{III}YH₃(Cl)₉(H₂O)] is most likely six-co-ordinate with the EDTA tridentate, but we cannot as yet entirely exclude a seven-co-ordinate structure in which the EDTA is quadridentate. The rubidium salt Rb+ [CrYH₂(Cl₂)(H₂O)]-,H₂O has also been prepared. In aqueous solutions pH 0-4, the complex [Cr^{III}YH(H₂O)] and its conjugate-base $[Cr^{III}Y(H_2O)]^-$ are reformed, thus

$$\begin{split} & [\mathrm{Cr}^{\mathrm{III}}\mathrm{YH}_{\mathtt{x}}(\mathrm{Cl})_{\mathtt{2}}(\mathrm{H}_{\mathtt{2}}\mathrm{O})]^{\mathtt{x}-\mathtt{3}} \rightarrow \\ & [\mathrm{Cr}^{\mathrm{III}}\mathrm{YH}_{\mathtt{y}}(\mathrm{Cl})(\mathrm{H}_{\mathtt{2}}\mathrm{O})]^{\mathtt{y}-\mathtt{2}} \rightarrow \\ & [\mathrm{Cr}^{\mathrm{III}}\mathrm{YH}_{\mathtt{z}}(\mathrm{H}_{\mathtt{2}}\mathrm{O})]^{\mathtt{z}-\mathtt{1}} \quad (3) \end{split}$$

where x = 1 or 2, y = 1 or 2 (and possibly 0), and z=0 or 1. At pH 2 ($\mu=1.0$ M) and 10° the overall rate constant is 9×10^{-3} sec.⁻¹. When scan spectra are recorded over the range 350- $700 \,\mathrm{m}\mu$ three isosbestic points are observed. Such experiments are consistent with a slow-fast reaction sequence, *i.e.* the first stage in (3) is rate determining. Further details including the [H+]dependence of the reaction will be reported in full elsewhere. Samples of [CrIIIYH₃(Br)₂(H₂O)], 3H₂O can be prepared in a similar manner by treating [CrIIIYH(H₂O)] with hydrobromic acid.

(Received, February 5th, 1968; Com. 140.)

- ² C. Furlani, G. Morpurgo, and G. Sartori, Z. anorg. Chem., 1961, 303, 1.
- ³ G. Schwarzenbach and W. Biedermann, Helv. Chim. Acta, 1948, 31, 459.
- ⁴ R. E. Hamm, J. Amer. Chem. Soc., 1953, 75, 5670.
 ⁵ R. L. Pecsok, L. D. Shields, and W. P. Schaefer, Inorg. Chem., 1964, 3, 114.
- ⁶ Cf. J. A. W. Shimi and W. C. E. Higginson, J. Chem. Soc., 1958, 260.

¹ J. L. Hoard, G. S. Smith, and L. Lind, in "Advances in the Chemistry of Co-ordination Compounds", ed. S. Kirschner, Macmillan Co., New York, 1961, pp. 296-302.