
Crystal Structure of Tricarbonyl-N-cinnamylideneanilineiron

By A. DE CIAN and R. WEISS*

(Laboratoire de Cristallochimie Associé au C.N.R.S., Institut de chimie de Strasbourg, B.P. 296-R8, 67-Strasbourg, France)

The preparation of iron carbonyl complexes containing azomethine analogues of 1,3-dienes, such as PhCH: CH·CH: NPh, Fe(CO)₃ (I), and PhN: CMe-CMe: NPh, Fe(CO)₃ (II) has been reported. From the n.m.r. and i.r. spectra it was inferred that π -1,3-co-ordination intervenes in (I), and σ -chelation through the nitrogen lone-pairs in (II).

We have now determined the X-ray crystal structure of (I). The results (Figure) show that

FIGURE

the bonding of the unsaturated imine ligand with the Fe(CO)₃ group is similar to that found in the conjugated diolefins co-ordinated to the same group² and that the nitrogen lone-pair does not play an important part in the bonding with the metal. The nitrogen atom is only 0·10 Å ($\sigma=0.023$ Å) away from the plane of the three carbon atoms C-1, C-2, and C-3; the deformation of the bond angle C-2-C-1-N is larger: 113.26° ($\sigma=1.59^{\circ}$).

The C-1–N distance of 1·320 Å ($\sigma=0.021$ Å) shows that the C-1–N bond order is still far greater than 1. The rest of the unsaturated ligand presents a similar geometry to that found in the butadiene fragments in a number of conjugated diolefins co-ordinated to the Fe(CO)₃ group. The C-1–C-2 bond length of 1·362 Å ($\sigma=0.023$ Å) is however significantly different from that of 1·45 Å found in C₄H₆Fe(CO)₃ ³ and is nearer to that of 1·374 Å found in C₆F₈Fe(CO)₃.⁴. The bond angles OC–Fe–CO of 89·28, 97·22, and 101·83° ($\sigma=1\cdot1^\circ$) show the same distortion as in C₄H₆Fe(CO)₃,³ the 89·28° bond angle being the one in trans position to the nitrogen and C-3 carbon atoms.

Crystal data: M=348, monoclinic; $a=10\cdot289(12)$, $b=6\cdot845(09)$, $c=22\cdot563(20)$ Å, $\beta=105\cdot30\pm0\cdot20^\circ$, U=1532 ų, $D_{\rm m}=1\cdot49$, Z=4, $D_{\rm c}=1\cdot51$; space group P $2_{\rm l}/c$ (No. 14). Intensities of 1613 independant non-zero reflexions have been measured with a Pailred automatic diffractometer using Mo- K_{α} radiation. No absorption corrections were applied.

The structure has been resolved by the symbolic addition procedure⁶ and Fourier methods. The refinement to an R value of 0.09 was carried out by isotropic full-matrix least-squares analysis and difference synthesis.

(Received, February 8th, 1968; Com. 153.)

¹ Sei Otsuka, T. Yoshida, and A. Nakamura, Inorg. Chem., 1967, 6, 20.

² M. R. Churchill and R. Mason, Adv. Organometallic Chem., 1967, 5, 93.

³ O. S. Mills and G. Robinson, Acta. Cryst., 1963, 16, 758.

⁴ M. R. Churchill and R. Mason, Proc. Chem. Soc., 1964, 226.

⁵ B. Dickens and W. N. Lipscomb, J. Chem. Phys., 1962, 37, 2084.

⁶ I. L. Karle and J. Karle, Acta Cryst., 1966, 21, 849.