
The Total Synthesis of Dasycarpidone and 3-epi-Dasycarpidone

By A. JACKSON, A. J. GASKELL, N. D. V. WILSON, and J. A. JOULE* (Chemistry Department, University of Manchester, Manchester 13)

WE recently reported¹ the synthesis of the ring system of the group of indole alkaloids typified by uleine² (Ia) and dasycarpidone^{3,2b}(Ib). We have now succeeded in extending our synthetic approach and have obtained thereby racemic dasycarpidone and 3-epi-dasycarpidone^{2b} (Ic), in each case identified by i.r., u.v., mass spectroscopic, and t.l.c. comparisons with the natural alkaloids.

Oxidation⁴ of 3-ethyl-4-methylpyridine (IIa) with selenium dioxide in refluxing pyridine gave 3-ethylisonicotinic acid (IIb) in 72% yield (m.p. 198-200°). Transformation into the corresponding ester (IIc) (b.p. $90-94^{\circ}/2$ mm.) was achieved in 80% yield by successive treatment

with thionyl chloride and methanol. Claisen condensation of this ester (IIc) with methyl propionate was effected with sodium hydride in 67% yield.

The resultant β -keto-ester (IId) (b.p. 102–110°/ 0.4 mm.) was hydrolysed and decarboxylated with refluxing aqueous H₂SO₄-HOAc to give the ketone (IIe) (b.p. $102-110^{\circ}/4$ mm.). Conversion into an enamine (pyrrolidine in refluxing benzene) was followed, without purification, by reaction⁵ with benzenediazonium chloride to give the phenylhydrazone (IIf) (m.p. 212-213°). Fischer indolisation, catalysed by syrupy phosphoric acid, gave the indole (III) in 70% yield (amorphous, λ_{\max} 227, 322 m μ ; log ϵ 4·33, 4·26, ν_{max} 1640 cm.⁻¹). The methiodide of (III) gave a single alcohol (IVa) (m.p. 169-175°) on reduction with potassium borohydride. The production of only the desired Δ^3 -piperideine is consistent with published data⁶ on the reduction of 3-substituted pyridinium salts. The transformation of the conjugated ketone (IVb) (m.p. 96-100°, λ_{max} 236, 315 m μ ; log ϵ 4.10, 4.28 v_{max} 3200, 1625 cm.⁻¹), the manganese dioxide oxidation product of (IVa), into the required enamine (V) was more difficult than for the corresponding de-ethyl analogue.¹

It was necessary to subject the compound to treatment with dimsyl sodium at 95° for 36 hr. followed by work-up using ammonium chloride in order to obtain the intermediate, (m.p. 151-153°, $\lambda_{\max} 242, 322 \text{ m}\mu; \log \epsilon 4.09, 4.20, \nu_{\max} 1665 \text{ cm}.^{-1}$).

Cyclisation of the intermediate resulted from treatment with 50% acetic acid at 100°. A readily separable mixture of dasycarpidone (Ib) and 3-epidasycarpidone (Ic) (m.p. 164-166°) was obtained in which the epi-base predominated to the extent of 5:1. Professor L. J. Dolby has kindly informed us that he has synthesised dasycarpidone and epidasycarpidone by a totally different approach.

(Received, January 29th, 1968; Com. 108.)

² (a) G. Buchi and E. W. Warnhoff, J. Amer. Chem. Soc., 1959, 81, 4433; (b) A. J. Gaskell and J. A. Joule, Chem. and Ind., 1967, 1089.

⁸ M. Ohashi, J. A. Joule, B. Gilbert, and C. Djerassi, *Experientia*, 1964, 20, 263; J. A. Joule, M. Ohashi, B. Gilbert, and C. Djerassi, Tetrahedron, 1965, 21, 1717.

⁴ D. Jerchel, J. Heider, and H. Wagner, Annalen, 1958, 613, 153. ⁵ V. I. Shvedov, L. B. Altukhova, and A. N. Grinev, Zhur. org. Khim., 1965, 1, 879 (Chem. Abs., 1965, 63, 6893).

⁶ R. E. Lyle and P. S. Anderson, Adv. Heterocyclic Chem., 1966, 6, 45.

¹ A. Jackson and J. A. Joule, Chem. Comm., 1967, 459.