Eunicin, An Oxa-bridged Cembranolide of Marine Origin

By Alfred J. Weinheimer,* Robert E. Middlebrook, James O. Bledsoe, Jun., William E. Marsico, and T. K. B. Karns

(Department of Chemistry, University of Oklahoma, Norman, Oklahoma, 73069)

The antibacterial marine diterpene eunicin (Ia), 1 $C_{20}H_{30}O_{4}$, m.p. 155°, $[\alpha]_{\rm b}$ -89°, present to the extent of 1% of the dry weight of the gorgonian (octocoral) Eunicea mammosa Lamouroux and known² to occur at least in part within the unicellular algal symbionts (zooxanthellae) associated with the invertebrate host, is shown to be a cembrane derivative with the unusual feature of

 $\alpha\beta'$ -unsaturated lactone (1765 cm.⁻¹) and olefinic (1664 cm.⁻¹) absorptions in the infrared. Its two unsaturations were characterized as -CMe=CH·CH₂-, based on the methyl singlet at δ 1·52† and the one proton triplet at δ 5·07 (J 7·5) (eunicin oxide, C₂₀H₃₀O₅, m.p. 188°), and as a conjugated *exo*-methylene, doublets at δ 5·70 (J 3·3) and 6·40 (J 3·5) (pyrazoline with CH₂N₂,

an ether bridge across the 14-membered carbocyclic ring. This assignment is fully substantiated by the X-ray crystallographic study reported in the Communication,³ which follows.

Eunicin (Ia) showed hydroxyl (3623 cm.-1),

 $C_{21}H_{32}N_2O_4,$ m.p. 122°) coupled (n.m.d.r.) to the β proton at C(1), a very broad signal at δ 3·40.

Acetylation of the oxidation resistant hydroxyl, -C(Me)OH, shifted the methyl singlet at δ 1·15 to 1·45 in the acetate [(Ib), $C_{22}H_{32}O_5$, m.p. 157°,

† The n.m.r. spectra were recorded in CDCl₃ and the coupling constants are in Hz.

no hydroxyl absorption]. The remaining methyl signal was a doublet at δ 0.85 (J 6.5).

The $\alpha\alpha'$ -protons of a di-secondary ether appeared as a doublet, δ 2·85 (J 9·5) and a double doublet, δ 3·25 (J 11 and 2·5). The latter signal shifted to δ 3·80 and 3·93 in the exo- $(C_{20}H_{28}O_3, \text{ m.p. }132^\circ, 2H \text{ singlet at }\delta$ 4·92) and oily endo-forms‡ (1H, broad, at δ 5·70) of anhydro-(Ia) [formed by treatment of (Ia) with SOCl₂ in pyridine] on becoming allylic. The former ether signal was coupled (n.m.d.r.) with the lactone proton at C(2) appearing as a double doublet at δ 4·43 (J 9·5 and 7·8) in (I) and as a doublet at δ 4·52 (J 9·5) in isoeunicin [(II), $C_{20}H_{30}O_4$, m.p. 128°, ν_{max} 1745 cm.-1) formed from (I) on pre-reduced platinum in a nitrogen atmosphere.

The triol [(III), $C_{20}H_{34}O_6$, m.p. 216°] resulting from permanganate hydroxylation of dihydroeunicin ($C_{20}H_{32}O_4$, m.p. 157°, ν_{max} 1770 cm⁻¹), obtained by sodium-butanol reduction of (I), was oxidized by Jones reagent to the keto-dilactone [(IV), $C_{20}H_{30}O_6$, m.p. 86°, ν_{max} 1712 and 1774 cm.⁻¹] in which the C(20) methyl singlet appeared at δ 1·40, as in (Ib). The simple methylene character of C(6) and C(7) was demonstrated by

the triplet (2 H) at δ 4.08 (J 6) of the acetate ($C_{20}H_{30}O_7$, m.p. 133°, ν_{max} 1230, 1730, and 1775 cm.⁻¹) derived from (IV) with peroxytrifluoroacetic acid.

Catalytic hydrogenation of (I) led to a mixture of dihydroisoeunicins epimeric at C(8) [(V), $\rm C_{20}H_{32}O_4$, m.p. 178—180°, $\rm v_{max}$ 1740 cm. $^{-1}$], ozonolysis of which produced the aldehyde lactones [(VI), $\rm C_{17}H_{28}O_4$, m.p. 93—100°, $\rm v_{max}$ 1735 and 1780 cm. $^{-1}$] in which the C(20) methyl singlet was again shifted to δ 1·39.

The absence of further vicinal coupling of the C(3) ether proton absorption was compatible only with the location of the secondary methyl at C(4) in a stereochemical disposition permitting an approach to 90° for the value of the H-C(3)-C(4)-H dihedral angle.⁴ The structure thus adduced for eunicin is shown in (Ia), which incorporates the stereochemical detail of the corroborating X-ray crystallographic results obtained³ for eunicin iodoacetate (Ic). In the crystalline state, (Ic) displays the required 76° H-C(3)-C(4)-H dihedral angle.

We thank the National Institutes of Health for financial support.

(Received, January 22nd, 1968; Com. 083.)

[‡] This compound was susceptible to air oxidation, and was the only compound for which a satisfactory elemental analysis was not obtained.

¹ L. S. Ciereszko, D. H. Sifford, and A. J. Weinheimer, Ann. New York Acad. Sci., 1960, 90, 917.

² L. S. Ciereszko, unpublished observation.

³ M. B. Hossain, A. F. Nicholas, and D. van der Helm, following Communication.

⁴ S. Corsano, J. M. Mellor, and G. Ourisson, Chem. Comm., 1965, 185.