Trigonal Planar Copper(I) and Electron Deficient Bridge Bonds in Bis(thiourea)copper(I) Chloride

By W. A. SPOFFORD, TERT., and E. L. AMMA*

(Department of Chemistry, University of South Carolina, Columbia, South Carolina 29208)

DURING a systematic study of thiourea complexes of the transition metals, we have found a complex of Cu(I) with trigonal planar geometry as well as containing a three-centre delocalized bridge bond. This is both novel geometry and bonding for Cu(I).

Bis(thiourea)copper(I) chloride, Cu[SC(NH₂)₂]₂Cl, was prepared from cuprous chloride and thiourea in aqueous solution¹ and single crystals were grown by slow evaporation of the reaction mixture: M, 175, monoclinic, $P2_1/a$. With Cu- $K(\alpha_1\alpha_2 \lambda = 1.5405, 1.5443$ Å), $a = 35.81 \pm 0.04, b = 8.24$,

c = 5.81 both ± 0.01 Å, $\beta = 92.5 \pm 0.2^{\circ}$, $D_m = 1.94 \pm 0.02$ g.cm.⁻³, Z = 8, $D_c = 1.98$ g.cm.⁻³, 1558 independent *kkl* intensity data were collected by standard multiple film equi-inclination Weissenberg methods. The structure was solved by standard techniques² and refined by complete matrix least-squares with anisotropic temperature factors to a final conventional R of 0.106.

The structure may be described as made up of almost trigonal planar Cu(I) triangles sharing vertices with adjacent triangles to form a chain,

FIGURE 1. View of the Cu[SC(NH₂)₂]₂Cl chain down the b axis showing the important distances and angles. The chain runs approximately left to right. Standard deviations in Å are: Cu–Cu \pm 0.004; Cu–S, Cu–Cl \pm 0.005. The angles are \pm 0.2° or less.

spiralling along the c direction. The triangles are made up in turn of a central Cu(I) with vertices of sulphur atoms from three different thiourea groups (Figure 1). An important feature of the structure is that the Cu-Cu separation alternates between a long and a short distance with an accompanying "broad" and a "sharp" Cu-S-Cu bridge angle. Each Cu atom has associated with it a "long" axial Cu-Cl distance. We view these as more or less ionic chlorine atoms, particularly since the analogous Ag-Cl distances³ in Ag[SC(NH₂)₂]₂Cl are somewhat shorter. The Cu-S distances fall in the range 2·23-2·31 Å and indicate substantial covalent bonding since a "normal" Cu-S single bond would be 2·39 Å.⁴ Cu-S distances varying between 2.29 and 2.47 Å with individual standard deviations of ± 0.008 Å were found in Cu₄[SC(NH₂)₂]₉(NO₃)₄.⁵ The bridged and terminal thiourea groups are all planar and are not significantly different from one another or from free thiourea itself.⁶

This short metal-metal distance with its concommitant sharp bridge angle is very reminiscent of the short metal-metal distances and sharp bridge angles in polymeric dimethylberyllium⁷ and dimeric trimethylaluminium,^{8,9} which are generally accepted to be three-centre electron pair bridge bonds. It can be seen in Figure 1 that the S(2) thiourea group is perpendicular to the Cu(2)-S(2)-Cu(1) plane. Hence, the only orbitals

CHEMICAL COMMUNICATIONS, 1968

and electrons this thiourea group can contribute to the bridge bond are from the S-C $p\pi$ molecular orbital. This means that we have a delocalized three-centre electron-pair bond (electron deficient) made up of (sp^2) orbitals from each Cu atom and the S-C $p\pi$ molecular orbital (Figure 2), which

FIGURE 2. View normal to Cu(1)-S(2)-Cu(2) plane of orbitals used to make the three-centre delocalized electronpair bridge bond.

is analogous to the bonding in dimethylberyllium and trimethylaluminium, but involves sulphur instead of carbon. This interaction might be expected to elongate the C-S bond of thiourea

¹ W. A. Spofford and E. L. Amma, to be published.

- ² For methods and computer programs see e.g. R. L. Girling and E. L. Amma, Inorg. Chem., 1967, 6, 2009.
- ⁸ E. A. Vizzini and E. L. Amma, J. Amer. Chem. Soc., 1966, 88, 2872.
 ⁴ L. Pauling "Nature of the Chemical Bond" 3rd ed., Cornell University Press, Ithaca, N.Y., 1960, pp. 246, 410.
- ⁶ R. G. Vranka and E. L. Amma, J. Amer. Chem. Soc., 1966, 88, 4270.
 ⁶ M. R. Truter, Acta Cryst., 1967, 22, 556.
- 7 A. I. Snow and R. E. Kundle, Acta Cryst., 1951, 4, 348.
- ⁸ P. H. Lewis and R. E. Rundle, J. Chem. Phys., 1953, 21, 986.
- ⁹ R. G. Vranka and E. L. Amma, J. Amer. Chem. Soc., 1967, 89, 3121.
- ¹⁰ N. C. Baenziger, H. L. Haight, and J. R. Doyle, Inorg. Chem., 1964, 3, 1535.

from that of free thiourea, but this is not observed. Since free thiourea is planar⁶ with non-bonding electron pairs on nitrogen it is unnecessary to invoke back-bonding to explain this invariance. This bridge bond could also be described as an ethylene-type linkage with one of the Cu sp^2 orbitals pointing toward the centre of the S-C bond. This would make the Cu atom more coplanar (vide infra) with the three sulphur neighbours, but it would make a larger distortion of the S-Cu-S angles from the idealized 120°. No doubt the true bonding picture is between these two extremes, and the maximum in the bonding electron density is probably not along the Cu(2)-S(2)-Cu(1) lines, but slightly displaced towards C(2), but not as far as the S(2)-C(2) midpoint. The displacement of Cu(1) is 0.2 Å from the S(2)S(3)S(4) plane and Cu(2) is 0.3 Å from the S(1)S(2)S(3) plane, both toward the respective C(1) atoms. This is a much more regular arrangement of ligands and Cu(I) to form a trigonal planar geometry than any previously reported.¹⁰

The broad angled bridge is readily understandable in terms of normal two electron pair Cu-S bonds with electrons from the non-bonding sp^2 sulphur orbitals. Similarly the terminal Cu-S bonds involve one sp^2 sulphur non-bonding pair of electrons.

We acknowledge financial support from the National Institutes of Health.

(Received, February 2nd, 1968; Com. 129.)