Novel Rearrangements in Carbodi-imide Chemistry¹

By F. L. BACH* and E. COHEN

(Lederle Laboratories, a Division of American Cyanamid Co., Pearl River, New York, 10965)

WE report here the unexpected formation of isomeric aryl branched 2-dialkylaminoethyl ethers when a phenolic substance is allowed to react with NN'-dicyclohexylcarbodi-imide (DCC) and an appropriately substituted 2-dialkylaminoethanol. Following the experimental conditions outlined in the Scheme, alkylation of p-nitrophenol using DCC and 2-dimethylamino-2-methylpropan-1-ol (IIa)† resulted in the formation of (VIIa) and (VIIIa) produced in a ratio of 9:1.‡

These unusual results may be attributed to the formation of an unsymmetrical ethylenimonium ion (Va) by way of an intramolecular displacement (neighbouring group participation²) initiated by the NMe₂ group of (IIIa). Once formed, the very reactive cyclic ethylenimonium ion (Va) would be vulnerable to nucleophilic attack by a phenol or phenoxide ion to afford (VIIa) and (VIIIa).§

We next searched for a similar rearrangement using an alcohol with sulphur on the β -carbon atom. The compound chosen was 2-n-hexylthio-2-methylpropan-1-ol (IIb)[†] which was allowed to react with

a, $\ddot{Y}Z = NMe_2$; b, $\ddot{Y}Z = n-C_6H_{13}S$; Ar = p-nitrophenyl, R¹ = cyclohexyl, (i) = equimolecular amounts of reactants heated (95–98°) in a sealed tube under argon for *ca*. 60 hr.

† The purity of (IIa) and (IIb) was established by n.m.r. spectral analysis.

[‡] Isomer ratios were determined by comparing n.m.r. signal intensities of the -CH₂ $\ddot{Y}Z$ protons in (VIIa) and (VIIb) with the OCH₂ protons in (VIIIa) and (VIIIb); g.l.c. techniques were also used.

§ Preliminary experiments indicate that the ratio of (VIIa) to (VIIIa) is not due to thermodynamic equilibrium.

p-nitrophenol and DCC using the experimental conditions described in the Scheme. Work-up and analysis of the reaction mixture revealed the presence of (VIIb) and (VIIIb) in an approximate ratio of 9:1.1

Based on the concept that ring-opening and ringclosing reactions of cyclic ethylenimonium and ethylene sulphonium ion intermediates are S_N2 like,³ it is difficult to rationalize the predominance of (VIIa) and (VIIb). However, it has been proposed that intermediates (Va) and (Vb) are resonance hybrids⁴ having considerable carboniumion like character due to forms (IVa) and (IVb).

Accepting this and using an argument analogous to the one recently suggested by Winstein,⁵ we propose that the resonance structure (IV) makes a substantial contribution to the transition stage for reactions of (V) and thus affects the ratio of C-ŸZ cleavages.

We thank Mr. W. Fulmor for assistance with n.m.r. studies and Mr. C. Pidacks for developing useful gas-liquid and liquid-liquid partition column chromatographic techniques.

(Received, February 21st, 1968; Com. 210.)

- ¹ For previous part in this series see F. L. Bach, J. Org. Chem., 1965, **30**, 1300.
 ² S. Winstein, C. R. Lindegren, H. Marshal, and L. L. Ingraham, J. Amer. Chem. Soc., 1953, **75**, 147.
 ³ J. Hine, "Physical Organic Chemistry," 2nd edn., McGraw-Hill, New York and London, 1962, p. 147.
 ⁴ S. Winstein and E. Grunwald, J. Amer. Chem. Soc., 1948, **70**, 828.
 ⁵ E. L. Allred and S. Winstein, J. Amer. Chem. Soc., 1967, **89**, 3991.