Homogeneous Hydrogenation of α-Olefins using Hydridocarbonyltris-(triphenylphosphine)rhodium(I)

By CHARMIAN O'CONNOR, G. YAGUPSKY, D. EVANS, and G. WILKINSON* (Inorganic Chemistry Laboratories, Imperial College, London, S.W.7)

CHLOROTRIS(TRIPHENYLPHOSPHINE)RHODIUM(I) is a useful catalyst for the homogeneous hydrogenation of a variety of olefins and acetylenes¹ and dichlorotris(triphenylphosphine)ruthenium(II), when activated by a base, is even more effective, though selective for terminal olefins.²

We now report that hydridocarbonyltris(triphenylphosphine)rhodium(I),³ RhH(CO)(PPh₃)₃, is also an effective actalyst in benzene solutions, but again highly selective for terminal olefins. This complex is also an efficient hydroformylation catalyst.²

With hex-1-ene, no isomerisation could be detected at sub-atmospheric pressures of hydrogen. Kinetic studies led to a rate expression similar to that found for RhCl(PPh₃)₃¹ for reduction to nhexane, over a catalyst-concentration range 0.105to 5.00 mM, hexene concentrations 0.28-1.8 M, hydrogen partial pressures 20-60 cm. and temperatures 15-30°. From the data we obtain the values $\Delta H_{+}^{\star} = 10.1$ k.cal.mole⁻¹, ΔS_{+}^{\star} , -7.3 e.u., which can be compared with 18.6 k.cal.mole⁻¹ and $+1\cdot 1$ e.u., for hexene using RhCl(PPh₃)₃. At 25° and 50 cm.⁻¹ pressure using 1.25 mM catalyst concentration, $k'_{\rm H}/k'_{\rm D} = 1.47$. There is no detectable hydrogenation using cyclohexene, cis-4methylpent-2-ene, penta-1,3-diene, or similar olefins.4

The mechanism of hydrogenation is quite different from that with RhCl(PPh₃)₃ and proceeds via an alkyl intermediate which undergoes hydrogenolysis. This is supported by the fact² that $RhD(CO)(PPh_{a})_{a}$ undergoes hydride transfers rapidly with α -olefins whereas exchange with internal olefins is slower by a factor of at least 10³. The rate-determining step in the hydrogenation and exchange reactions is presumably displacement, by olefin, of a solvent molecule (S) in the dissociated species $RhH(CO)(PPh_3)_2(S)$.

In its catalytic properties, RhH(CO)(PPh₃)₃ is similar to CoH(CO)₄, although more stable and amenable to study. The system is still a complicated and labile one; of the principle reactions (1-4), which proceed at 25° and 1 atmos., only the dissociation step has been noted previously.³ The solvent may be benzene, toluene, or dichloromethane.

$$RhH(CO)(PPh_{3})_{3} \xleftarrow{+ S} RhH(CO)(PPh_{3})_{2}(S) + PPh_{3}$$
(1)

RhH(CO)(PPh₃)₂(S)
$$\leftarrow + CO \\ \leftarrow + H_3$$

RhH(CO)₂(PPh₃)₂(S) (2)

$$2\text{RhH(CO)}_{2}(\text{PPh}_{3})_{2}(S) \xleftarrow{+ CO}_{+ H_{2}}$$
$$[\text{Rh(CO)}_{2}(\text{PPh}_{3})_{2}]_{2} \qquad (3)$$

$$[\operatorname{Rh}(\operatorname{CO})_{2}(\operatorname{PPh}_{3})_{2}]_{2} \xrightarrow{S + N_{2}}_{+ \operatorname{CO}}$$
$$[\operatorname{Rh}(\operatorname{CO})(\operatorname{PPh}_{3})_{2}S]_{2} \qquad (4)$$

The changes can be followed by analysis of i.r. and n.m.r. spectra of hydrido- and deuterido-species under differing conditions of temperature, gas atmosphere, and solvent. The initial reactive species $RhH(CO)(PPh_3)_2(S)$ is clearly involved in

hydrogenation, exchange, and isomerisation processes, while $RhH(CO)_2(PPh_3)_2(S)$ is involved in hydroformylation. The unstable yellow dimer obtained in (3) can be isolated (v_{co} 2017, 1992, 1800, and 1770 cm. $^{-1}$) and formulated as (I) [isoelectronic with $Co_2(CO)_8$]. The red solvated dimer, isolated as crystalline solvates (e.g. S = CH_2Cl_2) has v_{co} 1739 cm.⁻¹ and is formulated as (II). The species $RhH(CO)_2(PPh_3)_2(S)$, which is in equilibrium with other species has v_{Rh-H} 2050, τ ca. 19.1 br, $\dagger v_{co}$ 1980, 1942 cm.⁻¹. The spectroscopic analysis has been assisted by the complete spectral characterisation of the closely related but much more stable new iridium species, IrH(CO)₂L₂ $(L = PPh_3 \text{ and } AsPh_3)$, which are obtained by borohydride reduction of trans- $IrCl(CO)L_2$ in presence of CO in tetrahydrofuran solution.

(Received, February 21st, 1968; Com. 211.)

 \pm Solutions of RhH(Co)(PPh₃)_a at 25° have τ 19.27 br but below -10° show a 1:3:3:1 quartet, I (P-H) 14 c./sec., due to the undissociated trigonal bipyramidal species.

³ S. S. Bath and L. Vaska, J. Amer. Chem. Soc., 1963, 85, 3500.

⁴ L. Vaska, Inorg. Nuclear Chem. Letters, 1965, 1, 89, reports qualitative observations that ethylene is hydrogenated by RhH(CO)(PPh_s)_s.

¹ J. A. Osborn, F. H. Jardine, J. F. Young, and G. Wilkinson, J. Chem. Soc. (A), 1966, 1711; F. H. Jardine, J. A. Osborn, and G. Wilkinson, J. Chem. Soc. (A), 1967, 1574; S. Montelatici, A. van der Ent, J. A. Osborn, and G. Wilkinson, J. Chem. Soc. (A), 1968, 1054. ² P. S. Hallman, D. Evans, J. A. Osborn, and G. Wilkinson, Chem. Comm., 1967, 305.