435

Cationic Carbonyl Complexes of Platinum and Iridium

By M. J. CHURCH and M. J. MAYS*

(University Chemical Laboratory, Lensfield Road, Cambridge)

THE recent synthesis of cationic carbonyl complexes of palladium¹ and platinum^{1,2} prompts us to report a more convenient reaction which we have used to prepare a wide range of cationic carbonyl complexes of platinum and iridium. In the presence of sodium perchlorate, cis- or trans- $PtCl_2(PEt_3)_2$ react immediately with one mole of CO under ambient conditions in acetone solution to give trans-PtCl(CO)(PEt₃)₂+ ClO₄- in quantitative yield. Cationic hydrido- and aryl-platinum carbonyl complexes may be similarly prepared. The reaction of trans-PtHCl(PEt₃)₂ to yield trans-PtH(CO)(PEt₃)₂+ClO₄- may be contrasted with its reaction with CO under pressure in the presence of aqueous tetrafluoroboric acid to give the chlorocarbonyl cation.²

Many π -bonding ligands other than CO are equally effective in displacing halogen under these conditions. For example, Me₃CNC reacts with *trans*-PtHCl(PEt₃)₂ to yield *trans*-PtH(CNCMe₃)-(PEt₃)₂+ ClO₄⁻, the first reported complex containing both isocyanide and hydride ligands.

Under the same conditions as for the platinum complexes, iridium compounds behave rather differently and e.g., $IrCl(CO)(PPh_3)_2$ takes up *two* moles of CO giving $Ir(CO)_3(PPh_3)_2^+$. The n.m.r. spectrum of the analogous diphenylmethylphosphine complex indicates that the phosphines are *trans*; although ideally the triphenylphosphine cation has D_{3h} symmetry, the appearance of three CO frequencies in the i.r. spectrum implies some slight distortion due to interaction with the anion or

Complex ^a				v_{CO}^{a} (cm. ⁻¹)	$v_{M-H}b$ (cm1)	τ _{MH} b
$trans-PtCl(CO)(PEt_3)_2^+$			••	2109s		
$trans-PtH(CO)(PEt_3)_2^+$	• •	• •	••	2064s	2167s°	14.78
$trans-Pt(p-FC_{6}H_{4})(CO)(PEt_{3})_{2}^{+}$	•••	••	••	2098s		
trans-PtH(CNCMe ₃)(PEt ₃) ₂ +	••	••	••	2203s (NC)	đ	17.09
$Ir(CO)_{3}(PPh_{3})_{2}^{+}$.	••	••	••	2010s, 2018s, 2080w		
$\operatorname{Co(CO)_3(PPh_3)_2^+}$	••	••	••	2006s, 2013s, 2073w		
$Ir(CO)[P(OMe)_3]_2(PPh_2Me)_2^+$	••	••	••	1953s	-	

TABLE

^a Satisfactory analyses have been obtained for all complexes as their perchlorate salts.

^b In CHCl₃ solution.

^c Deuteriation studies indicate strong coupling of the CO and MH vibrations.

^d Not observed. In the deuteride v_{NC} is at 2194 cm.⁻¹.

solvent. (We have prepared the analogous cobalt complex³ as its perchlorate salt, and this has an i.r. spectrum in chloroform solution almost identical with that of the iridium complex.) Again, other π -bonding ligands are effective in the reaction, e.g., reaction of IrCl(CO)(PPh₂Me)₂ with P(OMe)₃ gives Ir[P(OMe)₃]₂(PPh₂Me)₂(CO)+ ClO₄-. A representative list of the complexes we have prepared is given in the Table.

The five co-ordinate iridium complexes are of interest as potential hydroformylation catalysts, although preliminary studies indicate that the tricarbonyl complex is less effective than the known

catalyst Ru(CO)₃(PPh₃)₂.⁴ This is probably due to the ease with which the iridium complex undergoes oxidative addition reactions to give stable sixco-ordinate products. Thus hydrogen at pressures of less than one atmosphere displaces CO from $\begin{array}{l} \mbox{Ir}({\rm CO})_{3}({\rm PPh}_{2}{\rm Me})_{2}^{+} \mbox{ giving } {\rm Ir}{\rm H}_{2}({\rm CO})_{2}({\rm PPh}_{2}{\rm Me}_{2})_{2}^{+} \\ (\tau_{\rm MH}, \ 20{\cdot}4 \ {\rm p.p.m.}; \ J_{\rm PH} \ 15{\cdot}0 \ {\rm c./sec.}). \end{array}$

Analogous chloro-complexes of palladium(II), nickel(II), and rhodium(I) do not react with CO at atmospheric pressure in the presence of sodium perchlorate.

(Received, February 26th, 1968; Com. 225.)

- ¹ H. C. Clark, K. R. Dixon, and W. J. Jacobs, *Chem. Comm.*, 1968, 93. ² H. C. Clark, P. W. R. Corfield, K. R. Dixon, and J. A. Ibers, *J. Amer. Chem. Soc.*, 1967, 89, 2360.
- ³ O. Vohler, Chem. Ber., 1958, 91, 1235.
- ⁴ D. Evans, J. A. Osborn, F. H. Jardine, and G. Wilkinson, Nature, 1965, 208, 1203.