The Molecular Structure of Tetrakis-[1,3-dimethyltriazenocopper(I)]

By J. E. O'CONNOR, G. A. JANUSONIS, and E. R. COREY* (Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221)

MANY metal complexes of 1,3-dimethyltriazene have been prepared¹ but no X-ray diffraction studies of these complexes have been reported. This structural investigation of 1,3-dimethyltriazenocopper(I) has revealed a novel arrangement of four dimethyltriazeno-ligands bonded to four copper atoms to form a sixteen-membered foldedring systen with metal-nitrogen and nitrogennitrogen bonding.

Structural studies of the related 1,3-diphenyltriazeno-ligand have shown that two of these ligands can co-ordinate to two metal atoms, forming an eight-membered ring as in the 1,3-diphenyltriazenocopper(I) dimer,² or a single ligand can co-ordinate to one metal atom, forming a strained four-membered ring as in 1,3-diphenyltriazenocobalt(III).³

Needle-like yellow crystals of 1,3-dimethyltriazenocopper(I) were supplied by Dr. F. E. Brinckman. A single crystal was obtained by recrystallization from ligroin (b.p. 60—90°). Crystals of [Cu(MeNNNMe)]₄ belong to the monoclinic system with unit cell parameters $a = 12.93 \pm 0.02$, $b = 12.22 \pm 0.02$, $c = 24.54 \pm 0.04$ Å, and $\beta =$ $94^{\circ}08' \pm 30'$, $D_{\rm m} = 1.86 \equiv D_{\rm c}$ for Z = 8. Systematic extinctions of hkl reflections for h + l odd, h0l reflections for l odd and 0k0 reflections for k odd indicate the space group $B2_1/c$. Multiple-film equi-inclination data were collected for the reciprocal levels 0kl to 12kl with Zr-filtered Mo- $K_{\rm m}$ radiation ($\lambda 0.7107$ Å). The intensities of 1178 independent diffraction maxima were estimated visually and were corrected for Lorentz-polarization effects. The positions of the four copper atoms were determined from a Patterson synthesis and all other non-hydrogen atoms were located from an electron-density difference-map based on phases from the heavy atoms. Full matrix isotropic least squares refinement has yielded a discrepancy index R = 12.8.

The molecular configuration of [Cu(MeNNNMe)]₄ is shown in the Figure and is similar to one of the

FIGURE. The molecular configuration of [Cu(MeNNNMe)].

structures postulated on the basis of n.m.r. studies by Brinckman *et al.*¹ The four copper atoms are TABLE. Interatomic distances and angles*

Cu(1)-Cu(2)	$\begin{array}{c} 2.67 & (1) & \mathrm{\AA} \\ 2.66 & (1) \\ 4.42 & (1) \\ 1.87 & (3) \end{array}$	Cu(4)-Cu(2)	2.64 (1) Å
Cu(1)-Cu(3)		Cu(4)-Cu(3)	2.68 (1)
Cu(1)-Cu(4)		Cu(2)-Cu(3)	2.97 (1)
Cu-N(av.)		N-N (av.)	1.29 (4)
	N-C (av.)) 1.50 (6)	
Cu(1)-Cu(2)-Cu(4)	112·5° (4)	Cu(2)-Cu(1)-Cu(3)	67.6 (3)
Cu(1)-Cu(3)-Cu(4)	111·7 (4)	Cu(2)-Cu(4)-Cu(3)	67.8 (3)
N-Cu-N (av.)	172·5 (1·5)	N-N-N (av.)	116.0 (3)

* Estimated standard deviations in the least significant figures are given in parentheses.

located in a diamond-shaped arrangement with an average distance of 2.66 Å between nearest copper atoms (Table). The Cu–N bond distances range from $1.82-1.91 \pm 0.03$ Å N–N from $1.23-1.37 \pm 0.04_5$ Å; and N–C from $1.39-1.61 \pm 0.06$ Å. Each copper atom is approximately linearly co-ordinated with an average N–Cu–N angle of 172.5° (range: $171-176 \pm 1.5^{\circ}$). The average value of 116° for the N–N–N angles (range: $112-121 \pm 3^{\circ}$) is larger than the 105° angles observed for the strained chelate rings in 1,3-diphenyltriazenocobalt(III)³ but is the same as the N–N–N angle observed in the

1,3-diphenyltriazencopper(I) dimer.³ The N-N distances are equivalent within the accuracy of the structural results and support delocalization in the triazeno-ligands. The idealized point-group symmetry of the non-hydrogen atoms in [Cu(MeNNN-Me)]₄ is $D_2(222)$. It appears that the square arrangement of copper atoms and ligands (D_{2d} , $\overline{42m}$) is not realized because interactions between adjacent methyl-groups prevent this more symmetrical molecular configuration.

(Received, February 29th, 1968; Com. 251.)

¹ F. E. Brinckamn, H. S. Hain, and R. A. Robb, Inorg. Chem., 1965, 4, 936.

- ² I. D. Brown and J. D. Dunitz, Acta. Cryst., 1961, 14, 480.
- ⁸ M. Corbett and B. F. Hoskins, J. Amer. Chem. Soc., 1967, 89, 1530.