Synthesis of Carbon–Boron Bonds with Small Carbon Molecules

By J. E. Dobson,^{a,b} P. M. TUCKER,^a R. SCHAEFFER,^b and F. G. A. STONE^a*

(*Department of Inorganic Chemistry, The University, Bristol 8; ^bDepartment of Chemistry, Indiana University, Bloomington, Indiana 47401)

A METHOD of producing useful quantities of carbon vapour for organic syntheses has been pioneered by Skell and his co-workers.¹ Recently atomic silicon and trimethylsilane have been shown to afford a trisilane as the major product.²

It would appear that atomic carbon might be used to prepare novel organo-metallic and -metalloidal compounds, and we have initiated a programme to test this idea by studying the reaction of carbon vapour with diboron tetrachloride using essentially the same apparatus and procedure described by Skell et al.¹ Multiple runs were carried out using approximately 25 g. samples of B₂Cl₄. Each run consumed about 4 g. of diboron tetrachloride and afforded approximately 0.6 g. of volatile products, which were isolated and purified by conventional high-vacuum techniques. The major product (about 400 mg. obtained per run) was a white crystalline, extremely moisture-sensitive, solid (I), m.p. 66-68°, which is thermally stable at room temperature for periods of at least several weeks. A complete elemental analysis and a molecular weight determination in boron trichloride solution established CB_4Cl_8 as the molecular formula. The ¹¹B n.m.r. spectrum consisted of a broad but symmetrical singlet at -57.0 p.p.m., relative to $Et_2O^{11}BF_3$ as external standard. These results suggest that (I) is tetrakisdichloroborylmethane, $C(BCl_2)_4$, and the mass spectrum confirms this. The most intense peaks in the mass spectrum occur at m/e 80-85 corresponding to BCl₂⁺ ions; on the basis of the isotopes present the envelope of peaks expected for these ions is 80-85. An exceedingly weak envelope, probably due to the molecular ion occurs in the region m/e 330-334 and there are very strong envelopes of peaks at m/e 298-311 (CB₄Cl₂+), 217-228 (CB₃Cl₅+), 183-193 ($CB_3Cl_4^+$) and 137-145 ($CB_2Cl_3^+$). Further details of the spectrum will be given subsequently.

Other products from the reaction between carbon vapour and diboron tetrachloride are $(Cl_2B)_3CCl$ (II) (m.p. -72°) and $(Cl_2B)_2CCl_2$ (III) (m.p. -82°), both of which afford BCl_a and oily residues on standing. Trisdichloroborylchloromethane and bisdichloroboryldichloromethane can be obtained in higher yield from the reaction between carbon vapour and boron trichloride. This reaction also affords a compound of formula $C_2B_2Cl_6$ (IV) (m.p. -10°) the infrared spectrum of which shows a band at 1550 cm.⁻¹, characteristic of a C:C·B group,³ suggesting that (IV) is cis- $Cl(Cl_2B)C : C(BCl_2)Cl.$

We are indebted to the National Science Foundation for support and a postdoctoral fellowship (J.E.D.), and to the S.R.C. for a research studentship (P.M.T.).

(Received, February 23rd, 1968; Com. 220.)

¹ P. S. Skell, L. D. Westcott, J. P. Golstein, and R. R. Engel, J. Amer. Chem. Soc., 1965, 87, 2829; P. S. Skell and R. R. Engel, *ibid.*, 1966, 88, 3749, 4883.
² P. S. Skell and P. W. Owen, J. Amer. Chem. Soc., 1967, 89, 3933.

³ T. D. Coyle, S. L. Stafford, and F. G. A. Stone, J. Chem. Soc., 1961, 3103.