The Structure of a Ruthenium Carbonyl 'Carbide' Cluster

By R. MASON* and W. R. ROBINSON†

(Department of Chemistry, University of Sheffield, Sheffield S3 7HF)

THE preparation and characterisation of a new cluster compound, $\operatorname{Ru}_6C(CO)_{17}$, and related molecules, $\operatorname{Ru}_6C(CO)_{14}$ (arene), have been described by Johnson, Johnston, and Lewis.¹ The complete structure of the mesitylene derivative, $\operatorname{Ru}C(CO)_{14}$ - $(C_6H_sMe_3)$, which is isoelectronic with $\operatorname{Rh}_6(CO)_{16}$.² has now been determined by X-ray diffraction methods and is shown in the Figure.

The crystals are monoclinic with a = 9.465, b = 15.825, c = 10.563 Å, Z = 2; space group $P2_1$ or $P2_1/m$. The structure determination was based on Patterson and Fourier methods. Fullmatrix least-squares refinement of positional and isotropic thermal atomic parameters in the space group $P2_1/m$ (the molecule is then required to

† Now at Department of Chemistry, Purdue University.

have strict C_s symmetry) has reduced the discrepancy index to a present value of 0.084 for 1195 reflexions (counter diffractometer data; $F^2_{\text{obs}}/\sigma(F^2_{\text{obs}}) \geq 3.0$). The e.s.d's. in the bond lengths are 0.007 (Ru-Ru), 0.04 (Ru-C) and 0.06 Å (C-O).

The 'carbide' atom lies very close to the centre of the slightly distorted octahedron of ruthenium atoms. The mean Ru-C (carbide) distance is $2 \cdot 04$ Å and the maximum deviation from this is $0 \cdot 16$ Å (4σ). Each of three ruthenium atoms [Ru(1), (3), (6)] has three terminally co-ordinated carbon monoxide groups; two ruthenium atoms [Ru(2), (5)] are bridged by a single carbon monoxide group and have two terminal CO's, the sixth ruthenium atom [Ru(4)] is bonded only to the arene, the carbide atom, and four adjacent rutheniums. The ruthenium atoms are therefore

all effectively eight co-ordinate (regarding the arene as a six-electron donor). The mean Ru-C (arene) bond length is 2.24, Ru-C (terminal carbonyl) 1.92, and Ru-C (bridged carbonyl) 2.06 Å.

Both the Ru-Ru and the metal-carbon (arene) bond distances³ imply a covalent radius for Ru(0) of 1.45 ± 0.02 Å [the Ru-Ru bond length is close to that of 2.848 Å in Ru₃(CO)₁₂];⁴ the mean Ru-C (carbide) distance of 2.04 Å is, therefore, less than the sum of metal and neutral carbon σ -bond radii.

One electron-transfer to each of the carbonylbridged ruthenium atoms, from the central carbon atom, would give those atoms, like the remaining ruthenium atoms, an 'inert-gas configuration'. The covalent radius of C^{2+} can be calculated as 0.60 Å (using Slater's rules) so that the sum of covalent radii (Ru + C^{2+}) becomes 2.05 Å, identical to within 0.01 Å with the observed mean value.

This extremely simple scheme must not be taken too literally. It should be emphasized that a molecular-orbital description of the bonding is identical in so far as it would not involve d orbitals on the central carbon atom to any significant extent. The six d_{22} metal orbitals pointing to the centre of the octahedron can be combined to give molecular orbitals of A_{1g} , E_g , and T_{1u} symmetry; the A_{1g} and T_{1u} orbitals are well situated to overlap with the carbon s and p orbitals respectively.

We thank the U.S. National Science Foundation for awarding a Postdoctoral Fellowship and the S.R.C. for financial support.

(Received, March 11th, 1968; Com. 300.)

¹ B. F. G. Johnson, R. D. Johnston, and J. Lewis, Chem. Comm., 1967, 1057.
² E. R. Corey, L. F. Dahl, and W. Beck, J. Amer. Chem. Soc., 1963, 85, 1202.
⁸ M. J. Bennett and R. Mason, Nature, 1965, 205, 760.
⁴ R. Mason and A. I. M. Rae, J. Chem. Soc., in the press.