Structures of Metal Dithiocarboxylates: the Crystal Structure of Bis(dithiobenzoato)palladium

By M. Bonamico and G. Dessy
(Centro di Chimica dei Composti di Coordinazione del C.N.R. Istituto di Chimica Generale e Inorganica, Università di Roma, Roma, Italy)

Furlani, et al. ${ }^{1}$ have synthesized certain new dithiocarboxylate complexes of the type $\mathrm{M}^{\mathrm{II}} \mathrm{L}_{2}$ and $M^{I \amalg} L_{3}$ where $M^{\amalg I}=N i, P d, P t ; M^{\amalg I}=C r, F e$, Co, Rh , In, Ir, and $\mathrm{L}^{-}=\mathrm{PhC} \cdot \mathrm{S} \cdot \mathrm{S}^{-}$or $\mathrm{PhCH}_{2^{-}}$ C•S.S.-.

We have undertaken the X-ray analysis of some of these complexes which are of special interest because of their similarity to the diethyldithiocarbamates. We report the crystal structure of bis(dithiobenzoato)palladium.

Crystals of $\left(\mathrm{PhCS}_{2}\right)_{2} \mathrm{Pd}$ are dark red-violet monoclinic prisms; $a=5.943 \pm 0.01, b=12.662 \pm$ $0.005, \quad c=28.707 \pm 0.01 \AA ; \quad \beta=93^{\circ} 36^{\prime} \pm 10^{\prime}$;
$U=2156 \AA^{3} ; D_{\mathrm{m}}=1.88$ g.cm. ${ }^{-3}$ (by flotation); $Z=6 ; D_{\mathrm{c}}=1.909 \mathrm{~g} . \mathrm{cm} .^{-3} ; F(000)=1229 \cdot 3$. Space group, $P 2_{1} / c$ from systematic absences. Data are taken from Weissenberg and precession photographs, using $\mathrm{Cu}-K_{\alpha}(\lambda=1 \cdot 5418 \AA)$ radiation. We recorded the X-ray intensities of 2442 independent reflections, visually estimated from equiinclination Weissenberg photographs taken about the a-axis and precession photographs taken about the b-axis.

Since there are six molecules per cell, two at least (type A in the Figure) must be centrosymmetric. A three-dimensional Patterson synthesis showed

Figure. [100] projection of the molecules with bond lengths (in A) and angles (in degrees) (standard deviations in parentheses).
the other four to be crystallographically equivalent (type B). From a succession of Fourier syntheses the positions of the sulphur atoms were determined, followed by those of the carbon and hydrogen atoms. Co-ordinates and anisotropic temperature factors were refined by least-squares. Present values ($R=\mathbf{5} \cdot \mathbf{1} \%$) define the bond lengths and angles given in the Figure.

The two crystallographically independent molecules (types A and B) are very similar. In both molecules there is virtual planarity of all atoms (the mean deviations from planarity being $0.05 \AA$): the molecular planes are practically parallel and are separated by $3 \cdot 5 \AA$. The palladium atom coordination is a distorted tetragonal. The Pd-S distances lie in the range $2 \cdot 32-2 \cdot 34 \AA$ (with mean
standard deviation $\sigma=0.003 \AA$), whilst the S-C bond lengths do not have significantly different values ($1.69-1.71 \AA, \sigma=0.01 \AA$). The C-C distances between $\mathrm{C}(1,1), \mathrm{C}(2,1), \mathrm{C}(2,8)$, and the corresponding phenyl groups ($1 \cdot 46-1 \cdot 47 \AA$ with $\sigma=0.015 \AA$) show a partial double-bond character consistent with the planarity of the molecules.

The interatomic distances between $\mathrm{Pd}(\mathbf{1})$ and $\mathrm{S}(2,4)$ [and the centrosymmetrically located $\mathrm{S}(2,4)$ (I)] of $3 \cdot 46 \AA$, and between $\mathrm{Pd}(2)$ and $\mathrm{S}(\mathbf{1}, 1)$ of $3.32 \AA$ suggest interesting interactions between these atoms. The centre of these molecules is similar to that found for nickel diethyldithiocarbamate. ${ }^{2}$
(Received, February 26th, 1968; Com. 226.)

[^0]
[^0]: ${ }^{1}$ C. Furlani and M. L. Luciani, unpublished work.
 ${ }^{2}$ M. Bonamico, G. Dessy, C. Mariani, A. Vaciago, and L. Zambonelli, Acta Cryst., 1965, 19, 619.

