Polarization-dependence and Oscillator Strengths of Metal-Metal Charge-transfer Bands in Iron(II,III) Silicate Minerals

By D. W. Robbins
(Turner Bros. Asbestos Ltd., P.O. Box 40, Rochdale, Lancashive)
and R. G. J. Strens*
(School of Physics, The University, Newcastle upon Tyne, NE1 7RU)

Silicate minerals which contain both ferrous and ferric iron commonly have an absorption band in the red ($6200-7400 \AA$) which is absent when either ion is present alone, suggesting assignment to $\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+}$ charge-transfer. Examples ${ }^{1}$ include tourmaline, trioctahedral micas, alkali amphiboles, ${ }^{2}$ cordierite, ${ }^{3}$ and kyanite. ${ }^{4}$ We have now found that the integrated intensity of the $7200 \AA$ band in fifteen analysed micas containing 0.3 to $25 \% \mathrm{FeO}$ and 0.3 to $6 \% \mathrm{Fe}_{2} \mathrm{O}_{3}$ is proportional to the product of the mole fractions of ferrous and ferric iron; this confirms the assignment, and enables us to determine the oscillator strength and polarization dependence of this transition for the first time. A knowledge of such charge-transfer processes is important in
understanding the electronic and magnetic properties of transition-metal compounds, their reaction mechanisms and kinetics.

Absorption spectra of mica and tourmaline were measured on oriented thin sections or cleavage flakes mounted in the sample beam of a Cary 14 H spectrophotometer, using a Nicol prism as polarizer. The spectra were digitized, and partially overlapping bands were resolved by an iterative leastsquares procedure, assuming a Gaussian band shape.

In all the minerals cited in Table 1, the ratio of the absorbances measured along the three principal vibration directions (x, y, z) is close to the ratio of the squares of the direction cosines of the donor \rightarrow acceptor vector calculated from the atomic

Table 1
Charge-transfer bands in some silicate minerals

Structure	Symmetry	$\bar{\nu}(\mathrm{kK})$	$w_{1}(\mathrm{kK})$	[c]	n	α_{11}	f_{11}	ϵ_{11}	$\mathrm{Fe}-\mathrm{Fe}$ distance	Polarization dependence
Tourmaline	$R 3 m$	13.8	$3 \cdot 4$	0.028	6	1200	0.018	975	$3.04 \AA$	$y=z, x=0$
Biotite mica ${ }^{\text {a }}$	C2/m	$13 \cdot 7$	$3 \cdot 3$	$0 \cdot 004$	32	256	0.005	280	$3 \cdot 1$	$z>y, x=0$
Chlorite	C2/m	14.5	$3 \cdot 0$	-	32	48	-	-	$3 \cdot 1$	$z>y, z=0$
Cordierite	Cccm	$17 \cdot 0^{\text {b }}$	3	0.003	4	20	0.003	340	$\geqslant 2.85$	$z>y, x=0$
Kyanite	$P \overline{1}$	$16.7{ }^{\text {c }}$	3	$\leqslant 0.0003$	2	5	$\geqslant 0.005$	$\geqslant 150$	$\geqslant 2.79$	$z>y>x$
Glaucophane	C2/m	$16.1{ }^{\text {d }}$	3		-		-	-	3•1, 3•25	$a^{*}=0, b, c$

[^0]Table 2
Homonuclear spin-allowed optical transitions in $\mathrm{d}^{\mathbf{n}}$ systems (octahedral)

co-ordinates, implying that the transition moment is directed rather accurately along this vector. In other words, the transition is excited only by that component $\left(E_{11}\right)$ of the electric vector of light which lies along the donor \rightarrow acceptor vector. The corresponding absorption coefficient $\alpha_{i 1}$ is equal to $\alpha_{x}+\alpha_{y}+\alpha_{z}$, or simply to 3α in a cubic crystal or other isotropic medium. We have defined ${ }^{1}$ the oscillator strengths ($f_{\|}$) and extinction coefficients (ϵ_{11}) using:

$$
\begin{aligned}
& f_{11}=2.35 \times 10^{-12} \alpha_{11} V w_{1} / n[c] \text { per ion-pair per } \\
& \text { second } \\
& \epsilon_{11}=4.35 \times 10^{-4} \alpha_{11} V / n[c] \text { litres mole }{ }^{-1} \mathrm{~cm}^{-1}
\end{aligned}
$$

where V is the molar volume, n is the number of nearest neighbour donor \rightarrow acceptor contacts per formula unit, [c] is the product of the mole fractions of donor and acceptor ions, and w_{1} is the band width at half height in wavenumbers. Typically $0.005<f_{1 i}<0.02$ and $200<\epsilon_{\| \mid}<1000$, compared with values of $f \sim 10^{-5}$ and $\epsilon \sim 10$ for spin- and symmetry-allowed $d-d$ transitions of ferrous iron, and $f \sim 0 \cdot 2, \epsilon \sim 2500$ for the broad $\mathrm{O}^{2-} \rightarrow \mathrm{Fe}^{2+}$ charge-transfer band in micas. ${ }^{1}$

Of the three types of overlap which are thought
to influence magnetic order and electronic conduction in transition-metal oxides, ${ }^{5}$ only the direct exchange ($t_{2 g}-t_{2 g}$) and indirect ($t_{2 g}-P(\pi)-t_{2 g}$) superexchange mechanisms give rise to allowed optical transitions in high-spin iron compounds (Table 2). Since it is improbable that $t_{2 g}-t_{2 g}$ overlap between iron atoms $3 \cdot 0$ to $3 \cdot 3 \AA$ apart would give oscillator strengths as high as $0 \cdot 02$, the $t_{2 g}-p(\pi)-t_{2 g}$ mechanism is preferred to direct exchange. This may be compared with the situation in the gold(I, III) and platinum(Ir, IV) charge-transfer complexes studied by Yamada and Tsuchida, ${ }^{6}$ in which only the $e_{g}-p(\sigma)-e_{g}$ mechanism can operate (Table 2). Direct exchange is permitted, and may well occur, in $\mathrm{Ti}_{2} \mathrm{O}_{3}$ and $\mathrm{V}_{2} \mathrm{O}_{3} .{ }^{5}$

Studies ${ }^{2,7}$ of electronic conduction in iron(II,III) silicates indicate that phonon-assisted chargetransfer has an activation energy of 0.6 to 0.8 ev , compared with our values of 1.7 to 2.1 ev for optical excitation. Similar differences (0.8 and $2 \cdot 1 \mathrm{ev}$) were found in chlorocuprate($(\mathrm{I}, \mathrm{II})$ complexes, ${ }^{8}$ and reflect the much larger departure from the equilibrium metal-ligand distances in the optical transition complexes.
(Received, March 13th, 1968; Com. 309.)

[^1]
[^0]: a This sample contains $7.71 \% \mathrm{FeO}$ and $1.84 \% \mathrm{Fe}_{2} \mathrm{O}_{3}$. Fourteen other micas gave similar results. b Assigned to a $t_{2 p} \rightarrow e_{g}$ transition in Fe^{2+} by Farrell and Newnham (ref. 3) and reassigned by us (ref. 1). c Assigned to an unspecified transition of Ti^{3+} by White and White (ref. 4) and reassigned by us (ref. 1). ${ }^{\text {d }}$ Reflectance spectrum, referred to crystallographic axes.

[^1]: ${ }^{1}$ R. G. J. Strens and D. W. Robbins, Mineral. Mag., to be published.
 ${ }^{2}$ J. G. F. Littler and R. J. P. Williams, J. Chem. Soc., 1965, 6368.
 ${ }^{3}$ E. F. Farrell and R. E. Newnham, Amer. Mineral., 1967, 52, 380.
 ${ }^{4}$ E. W. White and W. B. White, Science, 1967, 158, 915.
 ${ }^{5}$ P. W. Anderson, "Magnetism," vol. 1, p. 27, Academic Press, New York, 1963.
 ${ }^{6}$ S. Yamada and R. Tsuchida, Bull. Chem. Soc. Japan, 1956, 29, 421.
 ${ }^{7}$ R. S. Bradley, A. K. Jamil, and D. C. Munro, Geochim. Cosmochim. Acta, 1964, 28, 1670.
 ${ }^{8}$ (a) D. Culpin, P. Day, P. R. Edwards, and R. J. P. Williams, Chem. Comm., 1965, 450; (b) P. Day and D. W. Smith, J. Chem. Soc. (A), 1967, 1045.

