Vibrational Spectra and Stretching Force-constants of Tetrahalogeno-complexes of Manganese(II)

By H. G. M. EDWARDS, M. J. WARE, and L. A. WOODWARD*

(Inorganic Chemistry Laboratory, Oxford University, South Parks Road, Oxford)

REGULAR tetrahedral structures for $MnCl_{4-}^2$, $MnBr_{4-}^2$, and MnI_{4-}^2 are supported by i.r.¹ and u.v. absorption² evidence. Of the four fundamental frequencies only two (v_3 and v_4 of species f_2) are permitted in the i.r. whereas all four are permitted in the Raman effect, where $v_1(a_1)$ is expected to be the strongest feature and easily recognisable by its high degree of polarization. Hitherto no Raman spectra have been reported for these species. The

FIGURE. Force constants k_1 of tetrahalogeno-species.

present Communication gives Raman findings and confirmatory evidence from i.r. combination frequencies. It also points out a striking difference in force-constant trend, as compared with all other known tetrahedral MX_4 sets with X = Cl, Br, I.

The Mn^{II} complexes were prepared as alkyl

ammonium salts and analysed by standard methods.³ All are soluble in solvents such as MeCN, CH_2Cl_2 , and $CHCl_3$. The yellow colours of the solutions made it impracticable to excite the Raman spectra with the blue Hg 4358 Å line, so that Hg 5461 Å (Cary 81 spectrometer) and He 5876 and 6678 Å (special grating spectrograph⁴) were used. Results with solid samples using the He–Ne laser line at 6328 Å (Cary Laser spectrometer) are also reported. I.r. spectra (33–800 cm.⁻¹) were recorded with a Beckman I.R. 11 spectrometer.

Some typical results are shown in the Table. Salts with other cations gave similar results. Our i.r. findings for the active fundamentals ν_3 and ν_4 are in satisfactory agreement with previous work.¹ For solid samples we observed crystal-effect splittings of v_3 which had not always been reported previously. For $MnBr_4^{2-}$ and MnI_4^{2-} the highestfrequency i.r. combination bands $(v_3 + v_1)$ appear only weakly; but our assignments of them are reasonable in these cases, where both v_3 (i.r.) and v_1 (Raman) are directly and independently observed. A similar assignment of the analogous combination band of $MnCl_4^2$, which is relatively more intense, therefore gives support to the assignment of the single observed Raman frequency of $MnCl_4^{2-}$ as v_1 . Since this Raman line appeared only rather weakly, it might have been regarded as doubtful from the Raman spectra alone.

As v_1 is the sole frequency of species a_1 , it is possible to calculate from it a stretching force constant $k_1 = 4\pi^2 v^2 m$, where *m* is the mass of the halogen atom. Using the Raman solution values $v_1 = 249 \text{ cm.}^{-1}$ for MnCl_4^2 , $v_1 = 195$ for MnBr_4^2 and $v_1 = 116$ for MnI_4^2 , we obtain respectively $k_1 = 1.31$, 1.79, and 1.01 (10⁵ dynes/cm.).

The trend of these k_1 -values is anomalous, as compared with all other known sets of MX₄ species with X = Cl, Br, I. The anomaly is shown in the Figure, which includes for comparison typical results for sets of species which are (i) uncharged (M = Ge^{IV}), (ii) singly charged (M = Ga^{III}) and, like MnX₄²⁻, doubly charged (M = Zn^{II}), (for v_1 -values see ref. 5). In these and all other known sets, k_1 falls monotonically and nearly linearly in the order X = Cl, Br, I; whereas the Mn^{II} species alone show an anomalous rise from X = Cl to X = Br. The Figure also includes values of k_1 for

CHEMICAL COMMUNICATIONS, 1968

the tetrachloro- and tetrabromo-complexes of Fe^{III.6} Despite the fact that these are isoelectronic with the Mn^{II} complexes, they do not show the anomaly.

the k_1 -values is probably mainly attributable to the $k_{\rm rr}$ constants.

The work is being extended to tetrahalogenocomplexes of other transition-metal ions.

TABLE

Typical results and assignments

Mn ¹¹ Complex	$egin{array}{c} { m Method} \ { m (R=Raman)} \end{array}$	Cation	State of Sample	Observed frequency (cm1)	Assignment
MnCl4	R. Hg 5461 Å R. He–Ne laser ^a R. He–Ne laser ^b Infrared	Et ₃ NH+ Et ₃ NH+ K+ Et ₃ NH+	MeCN soln. solid MnCl ₂ –2KCl melt Nujol mull	249 w pol. 256 w 255 pol. 301 $\$ vs 278 $\$ vs 120 s 55 s	$\begin{array}{c} \nu_1 \ a_1 \\ \nu_1 \ a_1 \\ \nu_1 \ a_1 \\ \nu_3 \ f_2 \\ \nu_4 \ f_2 \\ \nu_4 \ f_2 \\ F \end{array}$
MnBr ₄ -	R. He 5876 Ű	${\operatorname{Bu}}_4^{\mathtt{n}}{\operatorname{N}}^+$	CHCl ₃ soln.	539 mw 539 mw 226 m 195 s pol. 81 ms 65 m	whence $v_1 \sim 259$ $v_3 f_2$ $v_1 a_1$ $v_4 f_2$ $v_9 e$
	R. He–Ne laser ^a Infrared	Bu ₄ ⁿ N+ Bu ₄ ⁿ N+	solid Nujol mull	$ \begin{array}{c} 195 \text{ m} \\ 221 \\ 209 \\ 89 \text{ s} \\ 428 \\ 416 \\ \end{array} $	$ \begin{array}{c} $
MnI ₄ ^{2–}	R. He 5876 Å R. He 6678 Å R. He-Ne laser ^a R. He-Ne laser ^a Infrared	Bu₄N+ Bu₄N+ Bu₄N+ Et₄N+ Et₄N+	CHCl₃ soln. CHCl₃ soln. solid solid Nujol mull	$ \begin{array}{c} 116 \text{ ms} \\ 58 \text{ mw} \\ 46 \text{ mw} \\ 107 \text{ s} \\ 108 \text{ s} \\ 193 \\ 188 \\ 56 \text{ s} \\ 296 \\ 286 \\ \end{array} vw $	whence $v_1 \approx 207$ $v_1 \approx a_1$ $v_4 = f_2$ $v_2 \approx v^1 \approx a_1$ $v_1 \approx a_1$ $v_3 = f_2$ $v_4 = f_2$ $v_4 = f_2$ $v_8 = v_1 = F_2$ whence $v_1 \approx 101$

w = weak; m = medium; s = strong; v = very; pol = polarised.

^a M. Gall, private communication; ^b J. H. R. Clarke, private communication; ^c G. Davidson, Thesis, Oxford, 1967.

In terms of a valency-type force-field with interactions, the constant k_1 becomes $k_r + 3k_{rr}$, where $k_{\mathbf{r}}$ represents individual bond-stretching and $k_{\rm rr}$ represents stretch-stretch interaction. Preliminary calculations suggest that the anomaly in

We thank Dr. J. H. R. Clarke, Dr. G. Davidson, and Mr. M. Gall for their co-operation, and the Science Research Council for a Research Studentship (to H.G.M.E.).

(Received, February 28th, 1968; Com. 244.)

¹A. Sabatini and L. Sacconi, J. Amer. Chem. Soc., 1964, 86, 17; D. M. Adams, J. Chatt, J. M. Davidson, and J. Garratt, J. Chem. Soc., 1963, 2189; R. J. H. Clark and T. M. Dunn, J. Chem. Soc., 1963, 2189. ² C. K. Jørgensen, Acta Chem. Scand., 1957, **11**, 53.

⁵ H. Siebert, "Anwendungen der Schwingungsspektroskopie in der Anorganischen Chemie", Springer, 1966, p. 66.

³ N. S. Gill, R. S. Nyholm, and P. Pauling, Nature, 1958, 182, 168; N. S. Gill and R. S. Nyholm, J. Chem. Soc., 1959, 3997.

⁴ L. A. Woodward and M. J. Ware, Spectrochim. Acta., 1963, 19, 775.

⁶ L. A. Woodward and M. J. Taylor, J. Chem. Soc., 1960, 4473; M. Gall, private communication (For FeBr₄-, $v_1 = 202 \text{ cm}.^{-1}$).