The Crystal and Molecular Structure of a-3-p-Bromobenzoyloxy(cyclopentadiene dimer)

By Riccardo Destro, Carlo M. Gramaccioli, and Massimo Simonetta*
(Istituto di Chimica Fisica, Università di Milano, Via Saldini 50, Milan, Italy)

The α - and $\{\beta$-isomers of 3 -hydroxy (cyclopentadiene dimer) are particularly interesting in view of the Cope rearrangement, which leads to syn- and anti-10-hydroxy(cyclopentadiene dimer), respectively. This rearrangement takes place with remarkable ease; ${ }^{1}$ the reason for such a behaviour must be connected with the favourable pre-orientation of the diallylic system. ${ }^{2}$

To elucidate this situation, a X-ray determination of the molecular structure of $\alpha-3-$ hydroxy(cyclopentadiene dimer) has been undertaken. Since the alcohol has a low m.p. $\left(37^{\circ}\right)$, the
p-bromobenzoate \dagger (racemic; 91°) was used. This compound is triclinic, space group $P \overline{1}$, with $a=10 \cdot 11, b=11 \cdot 39, c=6.78 \AA, \alpha=76.9^{\circ}, \beta=$ $80 \cdot 4^{\circ}, \gamma=73 \cdot 1^{\circ}$ and two molecules per unit cell. The structure was solved by three-dimensional Patterson and Fourier synthesis. After a leastsquares refinement the R index is 0.068 on 2244 measured independent reflexions, out of 3285 present ($\mathrm{Cu}-K_{\alpha}$, multiple-film Weissenberg technique).

The most salient details of the molecular geometry are shown in the Figure. The bridgehead

angle $\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(7)$ can be compared with a value of 97° and 96°, as found in the tricyclo$\left[3,2,1,0^{2,4}\right]$ octane 3 and norbornene ${ }^{4}$ nuclei and the double bonds $\mathrm{C}(4)-\mathrm{C}(5)$ and $\mathrm{C}(8)-\mathrm{C}(9)$, show normal lengths. The distance $\mathrm{C}(6)-\mathrm{C}(7)(1.59 \pm$ $0.015 \AA$) seems particularly important, because this is the bond broken during the Cope rearrangement; the ease of this reaction is therefore understandable. The favourable pre-orientation of the di-allylic system seems to be of minor importance,
because the two double bonds are situated rather far from each other [$\mathrm{C}(4)-\mathrm{C}(9) 3 \cdot 35$; $\mathrm{C}(5)-\mathrm{C}(8)$ $2 \cdot 84 \AA$]. The overlap integral between the π-orbitals involved in the formation of the new bond amounts only to $S \simeq 0.02$, as compared with $S \simeq 0.06$ in "boat-like" and $S \simeq 0.05$ in "chair-like" reaction paths for 1,5-hexadiene.

The financial support of Consiglio Nazionale delle Ricerche (C.N.R.) is gratefully acknowledged.
(Received, March 12th, 1968; Com. 306.)
${ }^{1}$ R. B. Woodward and T. J. Katz, Tetrahedron, 1959, 5, 70.
${ }^{2}$ S. J. Rhoads in "Molecular Rearrangements," ed. P. de Mayo, John Wiley, New York, 1963, p. 689.
${ }^{3}$ A. C. McDonald and J. Trotter, Acta Cryst., 1965, 18, 243.
4 A. C. McDonald and J. Trotter, Acta Cryst., 1965, 19, 456.

