trans-Bis(triphenylphosphine)methyldi-iodorhodium(III): a Square-pyramidal Complex

By P. G. H. Troughton and A. C. Skapski*
(Chemical Crystallography Laboratory, Imperial College, London, S.W.7)

The title compound was prepared by Wilkinson and his co-workers during studies ${ }^{1}$ of oxidative addition reactions. ${ }^{2}$ It was obtained by the reaction of the powerful hydrogenation catalyst, tris(triphenylphosphine)chlororhodium(r) ${ }^{3}$ with an excess of iodomethane, followed by recrystallisation from benzene. We have determined its crystal structure and find the rhodium atom to have a square-pyramidal co-ordination. The only other five co-ordinated rhodium complex whose crystal structure is known, $\mathrm{RhH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3},{ }^{4}$ is trigonal bipyramidal.
trans-Bis(triphenylphosphine)methyldi-iodorhodium(III) crystallises with one molecule of benzene, $\left[\mathrm{RhH}_{2} \mathrm{Me}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{C}_{6} \mathrm{H}_{6}\right]$, to give greenbrown dichroic crystals which are monoclinic. The unit-cell dimensions are $a=23.802 \pm 0.008$, $b=9.869 \pm 0.005, \quad c=16.609 \pm 0.005 \bar{\AA}, \quad \beta=$ $99.93 \pm 0.01^{\circ}, U=3843 \AA^{3} ; D_{\mathrm{m}}=1.67 \mathrm{~g} . \mathrm{cm} .^{-3}$, $Z=4, D_{\mathrm{c}}=1.684 \mathrm{~g} . \mathrm{cm} .^{-3}$. The space group has proved to be $C 2 / c$.

Three-dimensional X-ray data were collected on a Siemens automatic four-circle diffractometer using $\mathrm{Cu}-K_{\alpha}$ radiation, and an absorption correction was applied. The structure was determined

Figure 1. The pyramidal co-ordination about the rhodium atom. The standard deviations in the bond distances are: Rh-I, $0.003 ; \mathrm{Rh}-\mathrm{P}, 0.004 ; \mathrm{Rh}-\mathrm{C}, 0.009 \AA$.
by standard methods, and least-squares refinement has now reached $R=0.039$ for 3635 independent reflections (including 105 unobserved reflections).

Figure 1 shows the co-ordination of the rhodium atom to be a slightly distorted square pyramid with the methyl group at the apex and the iodine and phosphorus atoms trans in pairs forming the (almost perfectly planar) base. The rhodium atom lies $0.25 \AA$ above this base plane.

$1 \AA$
Figure 2. The [010] projection of the structure of $\mathrm{RhI}_{2} \mathrm{Me}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{C}_{6} \mathrm{H}_{6}$. represents a methyl group above a rhodium atom.

The rhodium and methyl carbon atoms lie on a crystallographic diad giving the molecule C_{2} symmetry (Figure 2). The benzene molecules lie on centres of symmetry: they are merely solvated and play no role in the co-ordination about the rhodium atom. The phenyl rings are also arranged in such a way that the α-hydrogens do not approach the metal atom closely, nor are there any close intermolecular contacts. Thus the coordination is strictly five-fold.

The Rh-C (methyl) distance is $2.081 \AA$: we have been unable to find any other measurements of a rhodium-alkyl bond. The only other comparable distance is a $\mathrm{Rh}-\mathrm{C}$ (perfluoroalkyl) of $2.08 \pm$ $0.03 \AA$ found in $\pi-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Rh}(\mathrm{CO}) \mathrm{C}_{2} \mathrm{~F}_{5} \mathrm{I} .{ }^{5}$ These distances are surprisingly similar considering previous indications that the perfluoroalkyl group has π-acceptor properties almost comparable to
the carbonyl group. ${ }^{6}$ The $\mathrm{Rh}-\mathrm{I}$ and $\mathrm{Rh}-\mathrm{P}$ distances agree well with those found in $\pi-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Rh}$ -
$(\mathrm{CO}) \mathrm{C}_{2} \mathrm{~F}_{5} \mathrm{I},{ }^{5} \mathrm{RhH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}{ }^{4}$ and $\mathrm{Rh}(\mathrm{CS}) \mathrm{Cl}-$ $\left(\mathrm{PPh}_{3}\right)_{2} .{ }^{7}$
(Received, March 11th, 1968; Com. 288.)
${ }^{1}$ A. Nakamura, J. A. Osborn, and G. Wilkinson, private communication. We thank Professor G. Wilkinson and Dr. J. A. Osborn for providing us with the crystals.
${ }_{2}$ D. N. Lawson, J. A. Osborn, and G. Wilkinson, J. Chem. Soc. (A), 1966, 1733.
${ }^{3}$ J. A. Osborn, F. H. Jardine, J. F. Young, and G. Wilkinson, J. Chem. Soc. (A), 1966, 1711.
4 J. A. Ibers and S. J. LaPlaca, J. Amer. Chem. Soc., 1963, 85, 3501.
${ }^{5}$ M. R. Churchill, Chem. Comm., 1965, 86; Inorg. Chem., 1965, 4, 1734.
${ }^{6}$ M. R. Churchill and R. Mason, Adv. Organometallic Chem., 1967, 5, 126.
${ }^{7}$ J. L. de Boer, D. Rogers, A. C. Skapski, and P. G. H. Troughton, Chem. Comm., 1966, 756.

