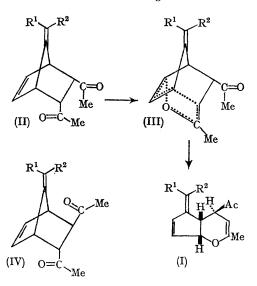
A [3,3]-Sigmatropic Shift in Diels-Alder Adducts of Fulvenes: an Example of a Reverse-Claisen Rearrangement

By M. T. HUGHES and R. O. WILLIAMS*

(Department of Chemistry, The College of Technology, Portsmouth)


PREVIOUSLY we reported that the reaction of fulvenes with cis-hex-3-ene-2,5-dione resulted in the formation of dihydropyrans¹ of structure (I) rather than the expected adducts (II). Evidence is now presented that the dihydropyrans (I) are the thermal transformation products of the Diels-Alder adducts (II)[†] which consequently require milder conditions for their preparation. Shorter reaction periods or lower temperatures have generally been effective and compounds of both types have now been isolated for a variety of 6- and 6,6'-substituted fulvenes (e.g. dimethyl-, diphenyl-, methylphenyl- and p-methoxyphenylfulvene). Thus, an equimolar solution of diphenylfulvene and the ketone when refluxed in ether for 20 hr. gave (II; $R^1 = R^2 = Ph$) in 23% yield whereas (I; $R^1 = R^2 = Ph$) was obtained in 35%

yield by boiling the reactants in benzene $(5\frac{1}{2}$ hr.). Similarly, when p-methoxyphenylfulvene and the ketone were refluxed in ether for 30 hr. a mixture of (I; $R^1 = p$ -MeOC₆H₄, $R^2 = H$) (15%) and (I; $R^1 = H$, $R^2 = p$ -MeOC₆H₄) (30%) was formed which could be separated by column chromatography; refluxing for $6\frac{1}{2}$ hr. produced mainly (II; $R^1 = H$, $R^2 = p$ -MeOC₆H₄) in 15% yield. The endo-diacetylnorbornene adduct (II; $R^1 =$ $R^2 = Ph$) smoothly rearranged, without apparent dissociation, on boiling for $\frac{1}{2}$ hr. in 80—100° light petroleum to give, in excellent yield, a product identical to the dihydropyran (I; $R^1 = R^2 = Ph$) prepared as described. This transformation could be observed directly in ethanol solution at 45° by following the change in the u.v. spectrum. Over a period of about 24 hr., the diphenylethylene

[†] Chemical and spectroscopic evidence is in full agreement with the structural assignment for these adducts and n.m.r. spectroscopy confirms the *endo*-stereochemistry of the acetyl groups in (II).

absorption of (II; $R^1 = R^2 = Ph$) λ_{max} 247.5 nm., (ϵ 17,700) was completely replaced by the diphenylbutadiene absorption, λ_{\max} 288 nm. (ϵ 17,700) present in (I; $R^1 = R^2 = Ph$). The rearrangement gave good first order kinetics ($k = 3.46 \times 10^{-5}$ sec.-1) and all spectra passed through a pure isosbestic point at 263.5 nm. The presence of this feature implies that no significant dissociation occurs during rearrangement and excludes from the reaction pathway any long-lived intermediate.

cis-endo-2,3-Diacetyl-7-isopropylidenenorborn-5ene (II; $R^1 = R^2 = Me$) rearranges even more rapidly to the dihydropyran (I; $R^1 = R^2 = Me$) (Table). The negative entropy of activation, the small solvent effect and the results reported above for the diphenyl adduct (II; $R^1 = R^2 = Ph$) are consistent with an intramolecular transformation occurring via a cyclic transition state (III), and are typically those observed for no-mechanism reactions.² This conversion of a $\gamma\delta$ -unsaturated ketone into an allyl vinyl ether by a [3,3]-sigmatropic shift^{3,4} is an example of the rarely documented reverse-Claisen rearrangement.⁵

¹ M. T. Hughes and R. O. Williams, Chem. Comm., 1967, 559.

² Sara Jane Rhoads, "Molecular Rearrangements", vol. 1, ed. P de Mayo, Interscience, 1963, pp. 655-706, and references cited.

⁸ R. B. Woodward and R. Hoffmann, J. Amer. Chem. Soc., 1965, 87, 2511; ibid., 1965, 87, 4389.

⁴ This rearrangement involves a transition state which must have similar geometry to that postulated in the Woodward and Katz rearrangement of substituted dicyclopentadienes, (R. B. Woodward and T. J. Katz, Tetrahedron, 1959, 5, 70).

⁵ M. Rey and A. S. Dreiding, Helv. Chim. Acta, 1965, 48, 1985; M. F. Ansell and V. J. Leslie, Chem. Comm., 1967, 949. See also E. Vogel, Angew., Chem. Internat. Edn., 1963, 2, 6.

⁶ E. P. Kohler and J. Kable, J. Amer. Chem. Soc., 1935, 57, 917; G. Kresze, S. Rau, G. Sabelus, and H. Goetz, Annalen, 1961, **648**, 57.

⁷ W. G. Woods, R. A. Carboni, and J. D. Roberts, J. Amer. Chem. Soc., 1956, 78, 5653.

⁸ Similar acceleration has been observed in rearrangement of dicyclopentadiene-8-one when compared to 8-hydroxydicyclopentadienes; R. C. Cookson, J. Hudec, and R. O. Williams, J. Chem. Soc. (C), 1967, 1382.

CHEMICAL COMMUNICATIONS, 1968

The known ease with which many Diels-Alder adducts of fulvenes dissociate in solution⁶ makes this change of special interest; however, the corresponding adducts prepared from 6,6'-dimethyl- and diphenyl-fulvenes and trans-hex-3ene-2,5-dione (IV; $R^1 = R^2 = Me$ or Ph) do dissociate under similar conditions rather than rearrange. These observations may probably be accounted for by the greater thermodynamic stability of the trans-adducts (IV) [cf. the cisadducts (II)] whereas the expected product of their rearrangement should be less stable than the dihydropyrans (I), because of increased nonbonded interactions.

Kinetic data* for rearrangement of (II; $R^1 = R^2 = Me$)

T°	Ethanol $k \times 10^5$ (sec. ⁻¹)	$egin{array}{c} { m Cyclohexane} \ k imes 10^5 \ ({ m sec.}^{-1}) \end{array}$
30	7.25	
32.5	_	1.83
35	13 ·0	2.53
40	$23 \cdot 4$	4.5
45	39.9	8.65
ΔE^{\ddagger} (kcal. mole ⁻¹)	21.0	$24 \cdot 3$
ΔS‡ 308·1 (e.u.)	5.8	-10.5
$\log A$	11.96	10.94

* Two runs were made for each determination; good first-order kinetics were observed.

cis-endo-2,3-Diacetylnorbornene is relatively very stable and shows no tendency to dissociate or rearrange at temperatures below 100°. Thus, the ease with which the fulvene adducts (II) undergo this transformation is best interpreted in terms of the greater strain associated with the trigonal carbon atom C-7 7,8 and the extension of conjugation due to the developing butadiene system. This involvement of the exocyclic system is supported by the fact that the adduct (II; $R^1 = p$ -MeOC₆H₄, $R^2 = Me$) rearranges approximately twice as fast as (II; $R^1 = Ph$, $R^2 = Me$).

(Received, March 27th, 1968; Com. 385.)