Mechanism of Phenanthrenequinone Photocycloaddition to Olefins

By Y. L. CHOW* and T. C. JOSEPH

(Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada)

THE photocycloaddition of phenanthrenequinone (PQ) to conjugated olefins has been shown to give non-stereospecific adducts.^{1,2} Because of the rapid isomerization of these conjugated olefins through PQ triplet sensitization^{1,3} the stereospecificity of the cycloaddition $[e.g. (III) \rightarrow (I)]$ remains uncertain.^{2b} To show the mechanism, it is vital to know the stereochemical consequence of the cycloaddition process. As a vertical or nonvertical energy transfer⁴ from PQ ($E_{\rm T} = 48.8$ kcal./ mole)¹ to a simple olefin $(E_{\rm T} = ca. 80 \text{ kcal./mole})^{5}$ is an unlikely process, investigations on cycloaddition systems have been carried out.

The photocycloadditions of PQ to either cis- or trans-but-2-ene⁺ were slow and gave an identical mixture of cis- and trans-(I) in nearly quantitative The n.m.r. integration of the methine vield. protons showed the mixture to have a cis: trans ratio of 57:43. The assignments of trans-(I)

(m.p. 162-163°, M⁺ 264) and cis-(I) (m.p. 89-91°, M^+ 264) follow from the chemical shifts of the methine protons in which the methine proton of trans-(I) (240 c./sec. from tetramethylsilane) resonates at higher field^{2,6} than that of cis-(I) (262 c./sec.). A similar photoaddition to an excess of trans-oct-4-ene gave a low yield of a mixture of cis- and trans-adduct but no cis-oct-4-ene in the recovered olefin (v.p.c. analysis). The low yield of this adduct indicates that a photoreduction may occur concurrently since the ketones which undergo photoreduction also add smoothly to olefins.⁷ Further, both photoreactions have been shown to occur through the $n \to \pi^*$ triplet of ketones.⁷ 9,10-Dihydroxyphenanthrene (II), the expected photoreduction product of PQ, is readily oxidized by air to PQ.8 Although an attempt to trap (II) as the acetate in a photoaddition to cyclohexene was not successful, PQ was isolated (ca. 15%) even when PQ was shown to be completely consumed at the end of the reaction. The oily adduct (40% total) was a mixture of the cisand trans-isomers and showed M^+ 290.

The points pertinent to the proposed mechanism are as follows. The concurrence of the reduction and the cycloaddition in the photolysis demonstrates that the $n \to \pi^*$ triplet of PQ (III or its resonance varieties) triggers the reaction in a stepwise manner. The triplet biradical (IV) must possess a fairly long lifetime in order to attain conformational equilibrium before reversing the electron spin and closing the dioxen ring to give the identical mixture of (I). The lack of transoct-4-ene isomerization proves that neither triplet sensitization of the olefin occurs nor, more specifically, does (IV) revert to (III) and an olefin.

(Received, March 21st, 1968; Com. 354.)

† The irradiation was performed in a Pyrex apparatus with a 450 watt Hanovia medium-pressure mercury lamp. A solution of PQ (0.5 g.) and excess of an olefin in benzene was bubbled with N_2 and kept at 5–10° while being irradiated for 4–5 hr. The progress of the reaction was followed by t.l.c. and/or u.v. spectroscopy.

¹ J. J. Bohning and K. Weiss, *J. Amer. Chem. Soc.*, 1966, 88, 2893, and references therein. ² (a) G. Pfundt and S. Farid, *Tetrahedron*, 1966, 22, 2237; (b) G. Pfundt and G. O. Schenck in "1,4-Cycloaddition Reactions," ed. J. Hamer, Academic Press, New York, 1967, Chapter 11.

³ G. S. Hammond, N. J. Turro, and P. A. Leermaker, J. Phys. Chem., 1962, 66, 1144.
⁴ G. S. Hammond et al., J. Amer. Chem. Soc., 1964, 86, 3197.
⁵ J. G. Calvert and J. N. Pitts, jun., "Photochemistry," John Wiley & Sons, New York, 1966, p. 601.
⁶ R. U. Lemieux, R. K. Kulling, H. J. Bernstein, and W. G. Schneider, J. Amer. Chem. Soc., 1958, 80, 6098.

⁷ D. R. Arnold, R. L. Hinman, and A. H. Glick, Tetrahedron Letters, 1965, 1425; D. Schorf and F. Korte, ibid., 1963, 821.

⁸ P. Lamort-Lucas, J. Matti, T. Guilmart, and M. Grumey, Bull. Soc. chim. France, 1948, 1215.