Ruthenium-Iron Carbonyls

By D. B. W. YAWNEY and F. G. A. STONE* (Department of Inorganic Chemistry, The University, Bristol 8)

THE dehalogenating and carbonylating properties of pentacarbonyl iron are well known and exemplified by its reactions with tungsten hexachloride affording $W(CO)_{6}$,¹ and with stannous chloride giving $Sn[Fe(CO)_{4}]_{4}$.² A possible new synthesis of polynuclear carbonylmetal complexes containing atoms of different transition metals could thus involve reaction between a reactive metal carbonyl, such as $Fe(CO)_{5}$, and a polynuclear carbonyl halide of another element.

A mixture of pentacarbonyliron and $[Ru(CO)_3-Cl_2]_2^3$ was heated at 90—100° under nitrogen for 30 hr. Chromatography afforded five products shown by elemental analysis, and i.r. and mass spectroscopy, to be a new polynuclear hydride $H_2FeRu_3(CO)_{13}$, and the new carbonyls $Fe_2Ru_2(CO)_{12}$ and $Ru_2Fe(CO)_{12}$, in addition to the well known carbonyls $Fe_3(CO)_{12}$ and $Ru_3(CO)_{12}$. Formation of orange, crystalline, $H_2FeRu_3(CO)_{13}$ [decomp. above 112°; ¹H n.m.r., τ 28·7 s; v_{CO} (cyclohexane), 2084 vs, 2072·5 vs, 2063 w, 2041 vs, 2031 m, 2021 w, 1991 m, 1883·8 w and 1845·3 m cm.⁻¹], could be due to moisture in the iron carbonyl. The mass spectrum of $H_2FeRu_3(CO)_{13}$ shows a parent ion m/e 727, followed by peaks corresponding to the loss of seven CO groups. Only after $[P - 7CO]^+$ are there peaks due to loss of H and CO. The compound $H_2Fe_4(CO)_{13}$ has been known for some time⁴ and the structure of the dianion $Fe_4(CO)_{13}^{2-}$ established by an X-ray crystallographic study.⁵ Moreover, $H_2Ru_4(CO)_{13}$ is one of several recently reported polynuclear ruthenium hydrides.⁶ Mixed hydrides such as $H_2FeRu_3(CO)_{13}$ are as yet relatively rare,⁷ and its isolation suggests the existence of $H_2Fe_2Ru_2(CO)_{13}$ and $H_2Fe_3Ru(CO)_{13}$.

The mass spectrum of purple crystalline $\operatorname{RuFe_2(CO)_{12}}$ (decomp. above 125°) shows a parent ion at m/e 550 followed by loss of twelve carbonyl groups. The i.r.spectrum in the carbonyl stretching region (cyclohexane) shows bands at 2056.5 s, 2044 vs, 2023 w sh, 2003.5 m br, 1859 vw and 1834 vw cm⁻¹. The presence of the bands at 1859 and 1834 cm.⁻¹ suggests that the molecular structure of $\operatorname{RuFe_2(CO)_{12}}$ is similar to that of $\operatorname{Fe_3(CO)_{12}}^8$ with an $\operatorname{Ru}(\operatorname{CO})_4$ group replacing the $\operatorname{Fe(CO)_4}$ group. The structure of brown $\operatorname{Ru_2Fe(CO)_{12}}$ [v_{co} (cyclohexane), 2067 m, 2042 vs, 2033.5 s, 2011.5 m and 1988.5 cm⁻¹; parent ion in mass spectrum at 595] is probably similar to that of Ru₃(CO)₁₂,⁹ with the metal-metal bonds in the Ru₂Fe cluster unsupported by bridging carbonyl groups. Only two other mixed metal-carbonyl complexes with structures probably involving a triangular metal cluster M₂M' have been described, $[Fe_2M'(CO)_{12}]^-$ (M' = Mn¹⁰ or Re¹¹).

A direct reaction between a 2:1 molar ratio of $Ru_3(CO)_{12}$ and $Fe_3(CO)_{12}$ in dry petroleum (80-100°) also gives some H₂FeRu₃(CO)₁₃ and Ru₂Fe(CO)₁₂.

(Received, April 1st, 1968; Com. 405.)

¹ A. N. Nesmeyanov, K. N. Anisimov, E. P. Mikheev, V. L. Volkov, and Z. P. Valueva, Zhur. neorg. Khim, 1959, 4, 249,503.

² J. D. Cotton, S. A. R. Knox, I. Paul, and F. G. A. Stone, *J. Chem. Soc.* (A), 1967, 264.
³ M. I. Bruce and F. G. A. Stone, *J. Chem. Soc.* (A), 1967, 1238.
⁴ W. Hieber, J. Sedlmeir, and R. Werner, *Chem. Ber.*, 1957, 90, 286.

⁵ R. J. Doedens and L. F. Dahl, J. Amer. Chem. Soc., 1966, 88, 4847.

⁶ B. F. G. Johnson, R. D. Johnston, J. Lewis, and B. H. Robinson, Chem. Comm., 1966, 851. ⁷ M. J. Mays and R. N. F. Simpson, Chem. Comm., 1967, 1024.

 ⁸ C. H. Wei and L. F. Dahl, J. Amer. Chem. Soc., 1966, 88, 1821.
⁹ E. R. Corey and L. F. Dahl, J. Amer. Chem. Soc., 1961, 83, 2203; Inorg. Chem., 1962, 1, 521; E. R. Corey, E. R. de Gil, and L. F. Dahl, to be published. ¹⁰ U. Anders and W. A. G. Graham, *Chem. Comm.*, 1966, 291.

¹¹G. O. Evans, J. P. Hargaden, and R. K. Sheline, Chem. Comm., 1967, 186.