Hexahydridotris(dimethylphenylphosphine)tungsten(VI)

By J. R. Moss and B. L. Shaw*

(School of Chemistry, The University, Leeds, 2)

Tertiary phosphines are very important ligands in transition-metal chemistry, being particularly good at stabilizing transition-metal hydrides. We have now prepared hexahydridotris(dimethylphenylphosphine)tungsten(VI) as a white air-stable crystalline solid. Previously the only metal atom to which more than three hydrogens have been

attached has been rhenium.¹⁻⁴ Oxidation of cis-[W(CO)₄(PMe₂Ph)₂] with an excess of chlorine gives trans-[WCl₄(PMe₂Ph)₂] as orange prisms. This complex is reduced by sodium borohydride in methanol to the hexahydrido-complex [WH₆-(PMe₂Ph)₃] as white fibrous needles, m.p. 110—112° (decomp.). The complex is very soluble in

organic solvents, the solutions smelling slightly of free dimethylphenylphosphine. In benzene solution the ^1H n.m.r. spectrum shows a broad triplet at τ 8·25 due to the methyl protons and a 1:3:3:1 quartet at τ 11·94 (each with satellites due to ^{183}W , spin $\frac{1}{2}$, natural abundance $14\cdot4\%$) due to the six hydrogens $\{J(P-H)\ 36\cdot9\ Hz\ and\ J(^{183}\text{W}-H)\ 27\cdot8\ Hz\}$. The i.r. spectrum (KCl disc) showed bands at 1834w, 1792s, 1755s, and 1731s cm. $^{-1}$ due to the tungsten-hydrogen stretching modes. With dilute hydrochloric acid [WH₆(PMe₂Ph)₃] reacts rapidly to give hydrogen and [WCl₄(PMe₂Ph)₂]

mixed with a small quantity of another hydridospecies $\{\nu(W-H)\ 1908s\ and\ 1800s\ cm.^{-1}\}$; this compound is under investigation. [WH₆(PMe₂-Ph)₃] is clearly analogous to complexes of the type [ReH₇(PR₃)₂]. It seems likely that an anion WH_{6+x} ($x=1,\ 2,\ or\ 3$) will exist like the well established⁴ ReH₉²⁻ and possibly similar multihydrido-complexes of osmium and tantalum.

We are very grateful to the Climax Molydenum Company for the generous gift of chemicals.

(Received, April 24th, 1968; Com. 495.)

¹ L. Malatesta, M. Freni, and V. Valenti, Gazzetta, 1964, 94, 1278.

J. Chatt and R. S. Coffey, Chem. Comm., 1966, 545.
P. G. Douglas and B. L. Shaw, unpublished results.

⁴ C. Abrahams, A. P. Ginsberg, and K. Knox, *Inorg. Chem.*, 1964, 4, 558.