The Structure of the Eight-co-ordinate Complex Tetramethylammonium Uranyl Tris-diethyldithiocarbamate

By Kristin Bowman and Zvi Dori
(Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122)

Information concerning the bonding between the heavy elements and sulphur donor atoms is very limited, and in particular, no structural information is available. We now report the crystal and molecular structure of tetramethylammonium uranyl tris-diethyldithiocarbamate $\left[\mathrm{Me}_{4} \mathrm{~N}\right]$ [$\mathrm{UO}_{2} \cdot 3 \mathrm{dtc}$]. This complex was first prepared by Zingaro. ${ }^{1}$ We have repeated the synthesis in

Figure. The co-ordination around the uranium atom. $\mathrm{O}(2)$ is below the plane and is not shown. Estimated standard deviation is given in parentheses.
anhydrous methanol, and by controlled precipitation under nitrogen obtained single crystals which were used in this study.

The crystals of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]\left[\mathrm{UO}_{2} \cdot 3 \mathrm{dtc}\right]$ are orthorhombic with cell dimensions $a=19 \cdot 03, b=17 \cdot 21$,
$c=9 \cdot 41 \AA, \quad U=3083 \AA^{3}, \quad Z=4$. Systematic absences for $0 k 1, k+1=2+1$, and for $h 0 l, h=2 n+1$, are consistent with space groups $P_{n a 1_{1}}$ and Pnam. Intensities of 1200 non-zero reflections were estimated visually from equiinclination Weissenberg photographs using Zr filtered $\mathrm{Mo}-K_{\alpha}$ radiation. Using Howells ${ }^{2}$ method we concluded the space group to be Pna2 2_{1}. The position of the uranium and the six sulphur atoms were obtained readily from a three-dimensional Patterson map. All carbon and nitrogen atoms were then placed by successive-difference Fourier synthesis. Several cycles of least-squares refinement of positional, scale, and thermal parameters converged to an R factor of $14 \cdot 0 \%$. The refinement is being continued.

The configuration about the uranium atom as seen along the uranyl axis is shown in the Figure. The uranyl group is linear (the O-U-O angle is $178.8 \pm 0.5^{\circ}$), and the $\mathrm{U}-\mathrm{O}(1)$ and $\mathrm{U}-\mathrm{O}(2)$ bond lengths are $1.72 \pm 0.04 \AA$ and $1.69 \pm 0.05 \AA$ respectively. The six sulphur atoms are arranged hexagonally around the uranium atom with an average U-S bond length of $2 \cdot 80 \pm 0.01 \AA$. The six sulphur atoms are not coplanar but they are staggered with respect to the plane which contains the uranium atom and perpendicular to the uranyl axis. The atoms $S(1), S(3)$, and $S(5)$ are $0 \cdot 30,0 \cdot 25$, and $0.23 \AA$ above this plane, and the atoms $\mathrm{S}(2)$, $\mathrm{S}(4)$, and $\mathrm{S}(6)$ are $0.17,0.26$, and $0.20 \AA$ below it. The average S-U-S angle is $73.5 \pm 0.5^{\circ}$. The fact that the six sulphur donor atoms are not coplanar may be attributed to steric factors. In contrast, six oxygen donor atoms have been shown to be coplanar, as for example in $\mathrm{Na}\left(\mathrm{UO}_{2}\right)(\mathrm{OAc})_{3} \cdot{ }^{3}$ The dimensions of the diethyldithiocarbamate group are similar to other complexes containing this ligand. ${ }^{4}$ The average angles and bond lengths for the diethyldithiocarbamate ligand are shown in the Figure.
(Received, April 4th, 1968; Com. 424.)

[^0]
[^0]: ${ }^{1}$ R. A. Zingaro, J. Amer. Chem. Soc., 1956, 78, 3568.
 ${ }^{2}$ E. R. Howells, D. C. Phillips, and D. Rogers, Acta Cryst., 1950, 3, 210.
 ${ }^{\mathbf{3}}$ W. H. Zachariasen and H. A. Plettinger, Acta Cryst., 1959, 12, 526.
 ${ }^{4}$ M. Bonanico, G. Dessy, C. Mariani, A. Vaciago, and L. Zambonelli, Acta Cryst., 1965, 19, 619.

