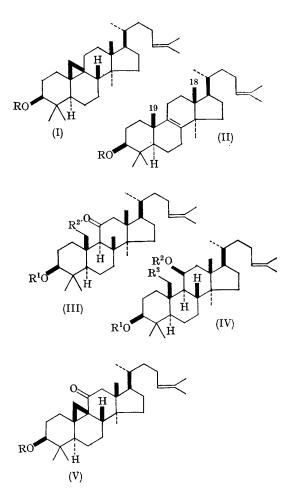
The Synthesis of Cycloartenol

By D. H. R. BARTON,* (Miss) D. KUMARI, and P. WELZEL (Imperial College, London, S.W.7)

and L. J. DANKS and J. F. McGHIE


(Chelsea College of Science and Technology, London, S.W.3)

The triterpenoid cycloartenol (I; R=H) is the parent of a large family of triterpenoids and alkaloids characterised by the 9β ,10 β -cyclopropane ring. Cycloartenol has recently been envisaged as a possibly important intermediate in the biosynthesis of tetracyclic triterpenoids and steroids in plants.¹ We report the first synthesis of cycloartenol from readily available lanosterol (II; R=H). Since the latter has been totally synthesised² our synthesis amounts to a total synthesis of cycloartenol.

 3β -Acetoxylanost-24-en-11-one³ (III; R¹=Ac, $R^2 = H$) was reduced with lithium aluminium hydride in ether, and the product benzoylated in pyridine to give 3β -benzoyloxylanost-24-en-11 β -ol (IV; $R^1 = COPh$, $R^2 = R^3 = H$), m.p. 229-230°, $[\alpha]_{D} + 68^{\circ}$ (all $[\alpha]_{D}$ in CHCl₃ at c, ca. 1.0). Treatment of the latter with nitrosyl chloride in pyridine afforded the corresponding 11β -nitrite (IV; $R^1 = COPh$, $R^2 = NO$, $R^3 = H$), m.p. 156-157°, which on photolysis⁴ in dry benzene containing iodine (6 mole) under oxygen-free nitrogen using a 125 w medium pressure mercury lamp (Pyrex filter) gave the iodo-derivative (IV; R^1 =COPh, R^2 =H, $R^3 = I$). This was immediately oxidised with Kiliani's chromic acid solution to furnish 3β benzoyloxy-19-iodolanost-24-en-11-one (III; R¹ =COPh, R^2 =I), (60%), m.p. (from CHCl₃-MeOH) 143—144°, $[\alpha]_{D} + 36^{\circ}$. There was no detectable formation of an 18-iodo-compound, the minor product from the reaction being 3β -benzoyloxylanost-24-en-11-one (III, R^1 =COPh, R^2 =H), m.p. 168—170°, $[\alpha]_{\rm D}$ + 75°.

On treatment with potassium t-butoxide in t-butanol at room temperature for 2 hr. the γ -iodoketone (III; R¹=COPh, R²=I) afforded smoothly 11-oxocycloartenyl benzoate (V; R=COPh), m.p. 144—145°, $[\alpha]_{\rm D}$ + 119°. Reduction of this ketone with an excess of lithium aluminium hydride in dioxan⁵ afforded cycloarternol (I; R=H), characterised as its acetate (m.p., mixed m.p., $[\alpha]_{\rm D}$ and i.r. spectrum).⁶

In another series of experiments cycloartenyl acetate dibromide⁷ was oxidised with chromic acid in acetic acid according to the directions of Corsano and Nicita⁸ to give, after debromination with sodium iodide in acetone and chromatography over alumina (grade III), 11-oxocycloartenyl acetate (V; R=Ac), (15%), m.p. 126-127°, $[\alpha]_D + 129^\circ$. On hydrogenation this compound gave 11-oxocycloartenyl acetate identical with an authentic specimen kindly provided by Professor Corsano.

Alkaline hydrolysis of 11-oxocycloartenyl acetate (V; R=Ac) gave 11-oxocycloartenol (V;

R=H), m.p. 185-187°, $[\alpha]_{D} + 139°$, which on benzoylation afforded the 3-benzoate (V; R=COPh) already described above.

We thank Professor D. Arigoni of the E.T.H., Zürich for a generous gift of cycloartenol.

(Received, April 2nd, 1968; Com. 418.)

¹ J. D. Ehrhardt, L. Hirth, and G. Ourisson, Compt. rend., 1965, 260, 5931; Phytochemistry, 1967, 6, 815; G. Ponsinet ¹ J. D. Elmand, D. Hind, and G. Odnisson, *compl. robal.*, 1966, 206, 5551, 1 hytochemistry, 1961, 6, 616, 61 1018
² R. B. Woodward, A. A. Patchett, D. H. R. Barton, D. A. J. Ives, and R. B. Kelly, J. Chem. Soc., 1957, 1131.
³ W. Lawrie, F. S. Spring, and H. S. Watson, Chem. and Ind., 1956, 1458.
⁴ M. Akhtar, D. H. R. Barton, and P. G. Sammes, J. Amer. Chem. Soc., 1964, 86, 3394; 1965, 87, 4601.
⁵ D. Herlem-Gaulier, F. Khuong-Huu-Lainé, and R. Goutarel, Bull. Soc. chim. France, 1966, 3478.
⁶ D. H. R. Barton, J. Chem. Soc., 1951, 1444.
⁷ K. Schreiber and G. Osske, Tetrahedron, 1964, 20, 1805.

- ⁸ S. Corsano and G. Nicita, Ricerca. Sci., 1967, 37, 351.